Cargando…
Defense against membership inference attack in graph neural networks through graph perturbation
Graph neural networks have demonstrated remarkable performance in learning node or graph representations for various graph-related tasks. However, learning with graph data or its embedded representations may induce privacy issues when the node representations contain sensitive or private user inform...
Autores principales: | Wang, Kai, Wu, Jinxia, Zhu, Tianqing, Ren, Wei, Hong, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756746/ https://www.ncbi.nlm.nih.gov/pubmed/36540905 http://dx.doi.org/10.1007/s10207-022-00646-y |
Ejemplares similares
-
Deep Neural Network Quantization Framework for Effective Defense against Membership Inference Attacks
por: Famili, Azadeh, et al.
Publicado: (2023) -
A Lightweight Method for Defense Graph Neural Networks Adversarial Attacks
por: Qiao, Zhi, et al.
Publicado: (2022) -
Generating Explanations for Conceptual Validation of Graph Neural Networks: An Investigation of Symbolic Predicates Learned on Relevance-Ranked Sub-Graphs
por: Finzel, Bettina, et al.
Publicado: (2022) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
COVID-19 infection inference with graph neural networks
por: Song, Kyungwoo, et al.
Publicado: (2023)