Cargando…
Predicting RNA secondary structure by a neural network: what features may be learned?
Deep learning is a class of machine learning techniques capable of creating internal representation of data without explicit preprogramming. Hence, in addition to practical applications, it is of interest to analyze what features of biological data may be learned by such models. Here, we describe Pr...
Autores principales: | Grigorashvili, Elizaveta I., Chervontseva, Zoe S., Gelfand, Mikhail S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756865/ https://www.ncbi.nlm.nih.gov/pubmed/36530406 http://dx.doi.org/10.7717/peerj.14335 |
Ejemplares similares
-
Adaptive evolution at mRNA editing sites in soft-bodied cephalopods
por: Moldovan, Mikhail, et al.
Publicado: (2020) -
A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features
por: Rozenwald, Michal B., et al.
Publicado: (2020) -
Caveats to Deep Learning Approaches to RNA Secondary Structure Prediction
por: Flamm , Christoph, et al.
Publicado: (2022) -
A hierarchy in clusters of cephalopod mRNA editing sites
por: Moldovan, Mikhail A., et al.
Publicado: (2022) -
bpRNA-align: improved RNA secondary structure global alignment for comparing and clustering RNA structures
por: Lasher, Brittany, et al.
Publicado: (2023)