Cargando…
Single-cell gene regulation network inference by large-scale data integration
Single-cell ATAC-seq (scATAC-seq) has proven to be a state-of-art approach to investigating gene regulation at the single-cell level. However, existing methods cannot precisely uncover cell-type-specific binding of transcription regulators (TRs) and construct gene regulation networks (GRNs) in singl...
Autores principales: | Dong, Xin, Tang, Ke, Xu, Yunfan, Wei, Hailin, Han, Tong, Wang, Chenfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756951/ https://www.ncbi.nlm.nih.gov/pubmed/36155797 http://dx.doi.org/10.1093/nar/gkac819 |
Ejemplares similares
-
Large-scale modeling of condition-specific gene regulatory networks by information integration and inference
por: Ellwanger, Daniel Christian, et al.
Publicado: (2014) -
Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration
por: Wang, Weixu, et al.
Publicado: (2021) -
Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity
por: Sun, Yuliangzi, et al.
Publicado: (2023) -
SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
por: Cabello-Aguilar, Simon, et al.
Publicado: (2020) -
STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing
por: Sun, Dongqing, et al.
Publicado: (2022)