Cargando…
Integrated analysis of multimodal single-cell data with structural similarity
Multimodal single-cell sequencing technologies provide unprecedented information on cellular heterogeneity from multiple layers of genomic readouts. However, joint analysis of two modalities without properly handling the noise often leads to overfitting of one modality by the other and worse cluster...
Autores principales: | Cao, Yingxin, Fu, Laiyi, Wu, Jie, Peng, Qinke, Nie, Qing, Zhang, Jing, Xie, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9757079/ https://www.ncbi.nlm.nih.gov/pubmed/36130281 http://dx.doi.org/10.1093/nar/gkac781 |
Ejemplares similares
-
UFold: fast and accurate RNA secondary structure prediction with deep learning
por: Fu, Laiyi, et al.
Publicado: (2021) -
SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration
por: Cao, Yingxin, et al.
Publicado: (2021) -
exFINDER: identify external communication signals using single-cell transcriptomics data
por: He, Changhan, et al.
Publicado: (2023) -
Integration of single cell data by disentangled representation learning
por: Guo, Tiantian, et al.
Publicado: (2021) -
Multi-task learning from multimodal single-cell omics with Matilda
por: Liu, Chunlei, et al.
Publicado: (2023)