Cargando…
Feature fusion based VGGFusionNet model to detect COVID-19 patients utilizing computed tomography scan images
COVID-19 is one of the most life-threatening and dangerous diseases caused by the novel Coronavirus, which has already afflicted a larger human community worldwide. This pandemic disease recovery is possible if detected in the early stage. We proposed an automated deep learning approach from Compute...
Autores principales: | Uddin, Khandaker Mohammad Mohi, Dey, Samrat Kumar, Babu, Hafiz Md. Hasan, Mostafiz, Rafid, Uddin, Shahadat, Shoombuatong, Watshara, Moni, Mohammad Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9757637/ https://www.ncbi.nlm.nih.gov/pubmed/36526680 http://dx.doi.org/10.1038/s41598-022-25539-x |
Ejemplares similares
-
MirrorME: implementation of an IoT based smart mirror through facial recognition and personalized information recommendation algorithm
por: Uddin, Khandaker Mohammad Mohi, et al.
Publicado: (2021) -
Covid-19 detection in chest X-ray through random forest classifier using a hybridization of deep CNN and DWT optimized features
por: Mostafiz, Rafid, et al.
Publicado: (2022) -
Prediction of dengue incidents using hospitalized patients, metrological and socio-economic data in Bangladesh: A machine learning approach
por: Dey, Samrat Kumar, et al.
Publicado: (2022) -
A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images
por: Ahamed, Khabir Uddin, et al.
Publicado: (2021) -
iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features
por: Charoenkwan, Phasit, et al.
Publicado: (2021)