Cargando…
Hyperstabilization of T cell microvilli contacts by chimeric antigen receptors
T cells typically recognize their ligands using a defined cell biology—the scanning of their membrane microvilli (MV) to palpate their environment—while that same membrane scaffolds T cell receptors (TCRs) that can signal upon ligand binding. Chimeric antigen receptors (CARs) present both a therapeu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9757849/ https://www.ncbi.nlm.nih.gov/pubmed/36520493 http://dx.doi.org/10.1083/jcb.202205118 |
Sumario: | T cells typically recognize their ligands using a defined cell biology—the scanning of their membrane microvilli (MV) to palpate their environment—while that same membrane scaffolds T cell receptors (TCRs) that can signal upon ligand binding. Chimeric antigen receptors (CARs) present both a therapeutic promise and a tractable means to study the interplay between receptor affinity, MV dynamics and T cell function. CARs are often built using single-chain variable fragments (scFvs) with far greater affinity than that of natural TCRs. We used high-resolution lattice lightsheet (LLS) and total internal reflection fluorescence (TIRF) imaging to visualize MV scanning in the context of variations in CAR design. This demonstrated that conventional CARs hyper-stabilized microvillar contacts relative to TCRs. Reducing receptor affinity, antigen density, and/or multiplicity of receptor binding sites normalized microvillar dynamics and synapse resolution, and effector functions improved with reduced affinity and/or antigen density, highlighting the importance of understanding the underlying cell biology when designing receptors for optimal antigen engagement. |
---|