Cargando…

Inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy

The assimilation, incorporation, and metabolism of sulfur is a fundamental process across all domains of life, yet how cells deal with varying sulfur availability is not well understood. We studied an unresolved conundrum of sulfur fixation in yeast, in which organosulfur auxotrophy caused by deleti...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Jason S. L., Heineike, Benjamin M., Hartl, Johannes, Aulakh, Simran K., Correia-Melo, Clara, Lehmann, Andrea, Lemke, Oliver, Agostini, Federica, Lee, Cory T., Demichev, Vadim, Messner, Christoph B., Mülleder, Michael, Ralser, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9757880/
https://www.ncbi.nlm.nih.gov/pubmed/36455053
http://dx.doi.org/10.1371/journal.pbio.3001912
_version_ 1784851917377110016
author Yu, Jason S. L.
Heineike, Benjamin M.
Hartl, Johannes
Aulakh, Simran K.
Correia-Melo, Clara
Lehmann, Andrea
Lemke, Oliver
Agostini, Federica
Lee, Cory T.
Demichev, Vadim
Messner, Christoph B.
Mülleder, Michael
Ralser, Markus
author_facet Yu, Jason S. L.
Heineike, Benjamin M.
Hartl, Johannes
Aulakh, Simran K.
Correia-Melo, Clara
Lehmann, Andrea
Lemke, Oliver
Agostini, Federica
Lee, Cory T.
Demichev, Vadim
Messner, Christoph B.
Mülleder, Michael
Ralser, Markus
author_sort Yu, Jason S. L.
collection PubMed
description The assimilation, incorporation, and metabolism of sulfur is a fundamental process across all domains of life, yet how cells deal with varying sulfur availability is not well understood. We studied an unresolved conundrum of sulfur fixation in yeast, in which organosulfur auxotrophy caused by deletion of the homocysteine synthase Met17p is overcome when cells are inoculated at high cell density. In combining the use of self-establishing metabolically cooperating (SeMeCo) communities with proteomic, genetic, and biochemical approaches, we discovered an uncharacterized gene product YLL058Wp, herein named Hydrogen Sulfide Utilizing-1 (HSU1). Hsu1p acts as a homocysteine synthase and allows the cells to substitute for Met17p by reassimilating hydrosulfide ions leaked from met17Δ cells into O-acetyl-homoserine and forming homocysteine. Our results show that cells can cooperate to achieve sulfur fixation, indicating that the collective properties of microbial communities facilitate their basic metabolic capacity to overcome sulfur limitation.
format Online
Article
Text
id pubmed-9757880
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-97578802022-12-17 Inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy Yu, Jason S. L. Heineike, Benjamin M. Hartl, Johannes Aulakh, Simran K. Correia-Melo, Clara Lehmann, Andrea Lemke, Oliver Agostini, Federica Lee, Cory T. Demichev, Vadim Messner, Christoph B. Mülleder, Michael Ralser, Markus PLoS Biol Research Article The assimilation, incorporation, and metabolism of sulfur is a fundamental process across all domains of life, yet how cells deal with varying sulfur availability is not well understood. We studied an unresolved conundrum of sulfur fixation in yeast, in which organosulfur auxotrophy caused by deletion of the homocysteine synthase Met17p is overcome when cells are inoculated at high cell density. In combining the use of self-establishing metabolically cooperating (SeMeCo) communities with proteomic, genetic, and biochemical approaches, we discovered an uncharacterized gene product YLL058Wp, herein named Hydrogen Sulfide Utilizing-1 (HSU1). Hsu1p acts as a homocysteine synthase and allows the cells to substitute for Met17p by reassimilating hydrosulfide ions leaked from met17Δ cells into O-acetyl-homoserine and forming homocysteine. Our results show that cells can cooperate to achieve sulfur fixation, indicating that the collective properties of microbial communities facilitate their basic metabolic capacity to overcome sulfur limitation. Public Library of Science 2022-12-01 /pmc/articles/PMC9757880/ /pubmed/36455053 http://dx.doi.org/10.1371/journal.pbio.3001912 Text en © 2022 Yu et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Yu, Jason S. L.
Heineike, Benjamin M.
Hartl, Johannes
Aulakh, Simran K.
Correia-Melo, Clara
Lehmann, Andrea
Lemke, Oliver
Agostini, Federica
Lee, Cory T.
Demichev, Vadim
Messner, Christoph B.
Mülleder, Michael
Ralser, Markus
Inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy
title Inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy
title_full Inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy
title_fullStr Inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy
title_full_unstemmed Inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy
title_short Inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy
title_sort inorganic sulfur fixation via a new homocysteine synthase allows yeast cells to cooperatively compensate for methionine auxotrophy
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9757880/
https://www.ncbi.nlm.nih.gov/pubmed/36455053
http://dx.doi.org/10.1371/journal.pbio.3001912
work_keys_str_mv AT yujasonsl inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT heineikebenjaminm inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT hartljohannes inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT aulakhsimrank inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT correiameloclara inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT lehmannandrea inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT lemkeoliver inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT agostinifederica inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT leecoryt inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT demichevvadim inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT messnerchristophb inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT mulledermichael inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy
AT ralsermarkus inorganicsulfurfixationviaanewhomocysteinesynthaseallowsyeastcellstocooperativelycompensateformethionineauxotrophy