Cargando…
A fast continuous time approach with time scaling for nonsmooth convex optimization
In a Hilbert setting, we study the convergence properties of the second order in time dynamical system combining viscous and Hessian-driven damping with time scaling in relation to the minimization of a nonsmooth and convex function. The system is formulated in terms of the gradient of the Moreau en...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758112/ https://www.ncbi.nlm.nih.gov/pubmed/36540365 http://dx.doi.org/10.1186/s13662-022-03744-2 |
Sumario: | In a Hilbert setting, we study the convergence properties of the second order in time dynamical system combining viscous and Hessian-driven damping with time scaling in relation to the minimization of a nonsmooth and convex function. The system is formulated in terms of the gradient of the Moreau envelope of the objective function with a time-dependent parameter. We show fast convergence rates for the Moreau envelope, its gradient along the trajectory, and also for the system velocity. From here, we derive fast convergence rates for the objective function along a path which is the image of the trajectory of the system through the proximal operator of the first. Moreover, we prove the weak convergence of the trajectory of the system to a global minimizer of the objective function. Finally, we provide multiple numerical examples illustrating the theoretical results. |
---|