Cargando…
Development and validation of an artificial neural network model for non-invasive gastric cancer screening and diagnosis
Non-invasive and cost-effective diagnosis of gastric cancer is essential to improve outcomes. Aim of the study was to establish a neural network model based on patient demographic data and serum biomarker panels to aid gastric cancer diagnosis. A total of 295 patients hospitalized in Nanjing Drum To...
Autores principales: | Fan, Zeyu, Guo, Yuxin, Gu, Xinrui, Huang, Rongrong, Miao, Wenjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758153/ https://www.ncbi.nlm.nih.gov/pubmed/36526664 http://dx.doi.org/10.1038/s41598-022-26477-4 |
Ejemplares similares
-
Artificial neural networks improve LDCT lung cancer screening: a comparative validation study
por: Hsu, Yin-Chen, et al.
Publicado: (2020) -
Early diagnosis for the onset of peri-implantitis based on artificial neural network
por: Fan, Wanting, et al.
Publicado: (2023) -
Development, Validation and Comparison of Artificial Neural Network and Logistic Regression Models Predicting Eosinophilic Chronic Rhinosinusitis With Nasal Polyps
por: Zhou, Huiqin, et al.
Publicado: (2022) -
Survival prediction of gastric cancer patients by Artificial Neural Network model
por: Yazdani Charati, Jamshid, et al.
Publicado: (2018) -
Application of artificial intelligence-driven endoscopic screening and diagnosis of gastric cancer
por: Hsiao, Yu-Jer, et al.
Publicado: (2021)