Cargando…
Multiple Layers of Complexity in O-Glycosylation Illustrated With the Urinary Glycoproteome
While N-glycopeptides are relatively easy to characterize, O-glycosylation analysis is more complex. In this article, we illustrate the multiple layers of O-glycopeptide characterization that make this task so challenging. We believe our carefully curated dataset represents perhaps the largest intac...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758497/ https://www.ncbi.nlm.nih.gov/pubmed/36334872 http://dx.doi.org/10.1016/j.mcpro.2022.100439 |
_version_ | 1784852053158264832 |
---|---|
author | Pap, Adam Kiraly, Istvan Elod Medzihradszky, Katalin F. Darula, Zsuzsanna |
author_facet | Pap, Adam Kiraly, Istvan Elod Medzihradszky, Katalin F. Darula, Zsuzsanna |
author_sort | Pap, Adam |
collection | PubMed |
description | While N-glycopeptides are relatively easy to characterize, O-glycosylation analysis is more complex. In this article, we illustrate the multiple layers of O-glycopeptide characterization that make this task so challenging. We believe our carefully curated dataset represents perhaps the largest intact human glycopeptide mixture derived from individuals, not from cell lines. The samples were collected from healthy individuals, patients with superficial or advanced bladder cancer (three of each group), and a single bladder inflammation patient. The data were scrutinized manually and interpreted using three different search engines: Byonic, Protein Prospector, and O-Pair, and the tool MS-Filter. Despite all the recent advances, reliable automatic O-glycopeptide assignment has not been solved yet. Our data reveal such diversity of site-specific O-glycosylation that has not been presented before. In addition to the potential biological implications, this dataset should be a valuable resource for software developers in the same way as some of our previously released data has been used in the development of O-Pair and O-Glycoproteome Analyzer. Based on the manual evaluation of the performance of the existing tools with our data, we lined up a series of recommendations that if implemented could significantly improve the reliability of glycopeptide assignments. |
format | Online Article Text |
id | pubmed-9758497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-97584972022-12-19 Multiple Layers of Complexity in O-Glycosylation Illustrated With the Urinary Glycoproteome Pap, Adam Kiraly, Istvan Elod Medzihradszky, Katalin F. Darula, Zsuzsanna Mol Cell Proteomics Research While N-glycopeptides are relatively easy to characterize, O-glycosylation analysis is more complex. In this article, we illustrate the multiple layers of O-glycopeptide characterization that make this task so challenging. We believe our carefully curated dataset represents perhaps the largest intact human glycopeptide mixture derived from individuals, not from cell lines. The samples were collected from healthy individuals, patients with superficial or advanced bladder cancer (three of each group), and a single bladder inflammation patient. The data were scrutinized manually and interpreted using three different search engines: Byonic, Protein Prospector, and O-Pair, and the tool MS-Filter. Despite all the recent advances, reliable automatic O-glycopeptide assignment has not been solved yet. Our data reveal such diversity of site-specific O-glycosylation that has not been presented before. In addition to the potential biological implications, this dataset should be a valuable resource for software developers in the same way as some of our previously released data has been used in the development of O-Pair and O-Glycoproteome Analyzer. Based on the manual evaluation of the performance of the existing tools with our data, we lined up a series of recommendations that if implemented could significantly improve the reliability of glycopeptide assignments. American Society for Biochemistry and Molecular Biology 2022-11-09 /pmc/articles/PMC9758497/ /pubmed/36334872 http://dx.doi.org/10.1016/j.mcpro.2022.100439 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Pap, Adam Kiraly, Istvan Elod Medzihradszky, Katalin F. Darula, Zsuzsanna Multiple Layers of Complexity in O-Glycosylation Illustrated With the Urinary Glycoproteome |
title | Multiple Layers of Complexity in O-Glycosylation Illustrated With the Urinary Glycoproteome |
title_full | Multiple Layers of Complexity in O-Glycosylation Illustrated With the Urinary Glycoproteome |
title_fullStr | Multiple Layers of Complexity in O-Glycosylation Illustrated With the Urinary Glycoproteome |
title_full_unstemmed | Multiple Layers of Complexity in O-Glycosylation Illustrated With the Urinary Glycoproteome |
title_short | Multiple Layers of Complexity in O-Glycosylation Illustrated With the Urinary Glycoproteome |
title_sort | multiple layers of complexity in o-glycosylation illustrated with the urinary glycoproteome |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758497/ https://www.ncbi.nlm.nih.gov/pubmed/36334872 http://dx.doi.org/10.1016/j.mcpro.2022.100439 |
work_keys_str_mv | AT papadam multiplelayersofcomplexityinoglycosylationillustratedwiththeurinaryglycoproteome AT kiralyistvanelod multiplelayersofcomplexityinoglycosylationillustratedwiththeurinaryglycoproteome AT medzihradszkykatalinf multiplelayersofcomplexityinoglycosylationillustratedwiththeurinaryglycoproteome AT darulazsuzsanna multiplelayersofcomplexityinoglycosylationillustratedwiththeurinaryglycoproteome |