Cargando…
Deep Interactive Learning-based ovarian cancer segmentation of H&E-stained whole slide images to study morphological patterns of BRCA mutation
Deep learning has been widely used to analyze digitized hematoxylin and eosin (H&E)-stained histopathology whole slide images. Automated cancer segmentation using deep learning can be used to diagnose malignancy and to find novel morphological patterns to predict molecular subtypes. To train pix...
Autores principales: | Ho, David Joon, Chui, M. Herman, Vanderbilt, Chad M., Jung, Jiwon, Robson, Mark E., Park, Chan-Sik, Roh, Jin, Fuchs, Thomas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758515/ https://www.ncbi.nlm.nih.gov/pubmed/36536772 http://dx.doi.org/10.1016/j.jpi.2022.100160 |
Ejemplares similares
-
Overcoming an Annotation Hurdle: Digitizing Pen Annotations from Whole Slide Images
por: Schüffler, Peter J., et al.
Publicado: (2021) -
Mapping stain distribution in pathology slides using whole slide imaging
por: Yeh, Fang-Cheng, et al.
Publicado: (2014) -
Deep learning based registration of serial whole-slide histopathology images in different stains
por: Roy, Mousumi, et al.
Publicado: (2023) -
Balancing Image Quality and Compression Factor for Special Stains Whole Slide Images
por: Sharma, Anurag, et al.
Publicado: (2012) -
Automated annotations of epithelial cells and stroma in hematoxylin–eosin‐stained whole‐slide images using cytokeratin re‐staining
por: Brázdil, Tomáš, et al.
Publicado: (2021)