Cargando…
Remaining useful life and state of health prediction for lithium batteries based on differential thermal voltammetry and a deep learning model
The accurate estimation of battery health conditions is a crucial challenge for development of battery management systems due to the degradation of cathode and anode materials. In this paper, a fusion of deep learning model and feature analysis methods is employed to approach accurate estimation for...
Autores principales: | Zhang, Lisheng, Wang, Wentao, Yu, Hanqing, Zhang, Zheng, Yang, Xianbin, Liang, Fengwei, Li, Shen, Yang, Shichun, Liu, Xinhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758532/ https://www.ncbi.nlm.nih.gov/pubmed/36536681 http://dx.doi.org/10.1016/j.isci.2022.105638 |
Ejemplares similares
-
Lithium-ion battery multi-scale modeling coupled with simplified electrochemical model and kinetic Monte Carlo model
por: Yu, Hanqing, et al.
Publicado: (2023) -
Parallel battery pack charging strategy under various ambient temperatures based on minimum lithium plating overpotential control
por: Yu, Hanqing, et al.
Publicado: (2022) -
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture
por: Li, Lingling, et al.
Publicado: (2016) -
A Novel Remaining
Useful Life Prediction Method for
Capacity Diving Lithium-Ion Batteries
por: Gao, Kaidi, et al.
Publicado: (2022) -
Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model
por: Cai, Yuxiang, et al.
Publicado: (2023)