Cargando…
A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors
OBJECTIVE: The study aimed to develop and validate a nomogram model with clinical risk factors and radiomic features for differentiating tuberculous spondylitis (TS) from pyogenic spondylitis (PS). METHODS: A total of 254 patients with TS (n = 141) or PS (n = 113) were randomly divided into training...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758984/ https://www.ncbi.nlm.nih.gov/pubmed/36536861 http://dx.doi.org/10.2147/IDR.S388868 |
_version_ | 1784852155506622464 |
---|---|
author | Wu, Shaofeng Wei, Yating Li, Hao Zhou, Chenxing Chen, Tianyou Zhu, Jichong Liu, Lu Wu, Siling Ma, Fengzhi Ye, Zhen Deng, Guobing Yao, Yuanlin Fan, Binguang Liao, Shian Huang, Shengsheng Sun, Xuhua Chen, Liyi Guo, Hao Chen, Wuhua Zhan, Xinli Liu, Chong |
author_facet | Wu, Shaofeng Wei, Yating Li, Hao Zhou, Chenxing Chen, Tianyou Zhu, Jichong Liu, Lu Wu, Siling Ma, Fengzhi Ye, Zhen Deng, Guobing Yao, Yuanlin Fan, Binguang Liao, Shian Huang, Shengsheng Sun, Xuhua Chen, Liyi Guo, Hao Chen, Wuhua Zhan, Xinli Liu, Chong |
author_sort | Wu, Shaofeng |
collection | PubMed |
description | OBJECTIVE: The study aimed to develop and validate a nomogram model with clinical risk factors and radiomic features for differentiating tuberculous spondylitis (TS) from pyogenic spondylitis (PS). METHODS: A total of 254 patients with TS (n = 141) or PS (n = 113) were randomly divided into training (n = 180) and validation (n = 74) groups. In addition, 43 patients (TS = 22 and PS = 21) were collected to construct a test cohort. t-test analysis, de-redundancy analysis, and minimum absolute shrinkage and selection operator (lasso) algorithm were utilized on the training set to obtain the optimal radiomics features from computed tomography (CT) for constructing the radiomics model and determine the radiomics score (Rad-score). Eight clinical risk predictors were identified to develop the clinical model. Combined with clinical risk predictors and Rad-scores, a nomogram model was constructed using multivariate logistic regression analysis. RESULTS: A total of 1781 features were extracted, and 12 optimal radiomic features were utilized to construct the radiomic model and determine the Rad-score. The combined clinical radiomics model revealed good discrimination performance in both the training cohort and the validation cohort (AUC = 0.891 and 0.830) and was superior to the clinical (AUC = 0.807 and 0.785) and radiomics (AUC = 0.796 and 0.811) models. The calibration curve and DCA also depicted that the nomogram had better clinical efficacy. The discriminative performance of the model is well validated in the test cohort (AUC=0.877). CONCLUSION: The clinical radiomic nomogram could serve as a promising predictive tool for differentiating TS from PS, which could be helpful for clinical decision-making. |
format | Online Article Text |
id | pubmed-9758984 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-97589842022-12-18 A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors Wu, Shaofeng Wei, Yating Li, Hao Zhou, Chenxing Chen, Tianyou Zhu, Jichong Liu, Lu Wu, Siling Ma, Fengzhi Ye, Zhen Deng, Guobing Yao, Yuanlin Fan, Binguang Liao, Shian Huang, Shengsheng Sun, Xuhua Chen, Liyi Guo, Hao Chen, Wuhua Zhan, Xinli Liu, Chong Infect Drug Resist Original Research OBJECTIVE: The study aimed to develop and validate a nomogram model with clinical risk factors and radiomic features for differentiating tuberculous spondylitis (TS) from pyogenic spondylitis (PS). METHODS: A total of 254 patients with TS (n = 141) or PS (n = 113) were randomly divided into training (n = 180) and validation (n = 74) groups. In addition, 43 patients (TS = 22 and PS = 21) were collected to construct a test cohort. t-test analysis, de-redundancy analysis, and minimum absolute shrinkage and selection operator (lasso) algorithm were utilized on the training set to obtain the optimal radiomics features from computed tomography (CT) for constructing the radiomics model and determine the radiomics score (Rad-score). Eight clinical risk predictors were identified to develop the clinical model. Combined with clinical risk predictors and Rad-scores, a nomogram model was constructed using multivariate logistic regression analysis. RESULTS: A total of 1781 features were extracted, and 12 optimal radiomic features were utilized to construct the radiomic model and determine the Rad-score. The combined clinical radiomics model revealed good discrimination performance in both the training cohort and the validation cohort (AUC = 0.891 and 0.830) and was superior to the clinical (AUC = 0.807 and 0.785) and radiomics (AUC = 0.796 and 0.811) models. The calibration curve and DCA also depicted that the nomogram had better clinical efficacy. The discriminative performance of the model is well validated in the test cohort (AUC=0.877). CONCLUSION: The clinical radiomic nomogram could serve as a promising predictive tool for differentiating TS from PS, which could be helpful for clinical decision-making. Dove 2022-12-13 /pmc/articles/PMC9758984/ /pubmed/36536861 http://dx.doi.org/10.2147/IDR.S388868 Text en © 2022 Wu et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Wu, Shaofeng Wei, Yating Li, Hao Zhou, Chenxing Chen, Tianyou Zhu, Jichong Liu, Lu Wu, Siling Ma, Fengzhi Ye, Zhen Deng, Guobing Yao, Yuanlin Fan, Binguang Liao, Shian Huang, Shengsheng Sun, Xuhua Chen, Liyi Guo, Hao Chen, Wuhua Zhan, Xinli Liu, Chong A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors |
title | A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors |
title_full | A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors |
title_fullStr | A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors |
title_full_unstemmed | A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors |
title_short | A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors |
title_sort | predictive clinical-radiomics nomogram for differentiating tuberculous spondylitis from pyogenic spondylitis using ct and clinical risk factors |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758984/ https://www.ncbi.nlm.nih.gov/pubmed/36536861 http://dx.doi.org/10.2147/IDR.S388868 |
work_keys_str_mv | AT wushaofeng apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT weiyating apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT lihao apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT zhouchenxing apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT chentianyou apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT zhujichong apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT liulu apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT wusiling apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT mafengzhi apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT yezhen apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT dengguobing apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT yaoyuanlin apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT fanbinguang apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT liaoshian apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT huangshengsheng apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT sunxuhua apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT chenliyi apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT guohao apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT chenwuhua apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT zhanxinli apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT liuchong apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT wushaofeng predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT weiyating predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT lihao predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT zhouchenxing predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT chentianyou predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT zhujichong predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT liulu predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT wusiling predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT mafengzhi predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT yezhen predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT dengguobing predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT yaoyuanlin predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT fanbinguang predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT liaoshian predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT huangshengsheng predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT sunxuhua predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT chenliyi predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT guohao predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT chenwuhua predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT zhanxinli predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors AT liuchong predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors |