Cargando…

A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors

OBJECTIVE: The study aimed to develop and validate a nomogram model with clinical risk factors and radiomic features for differentiating tuberculous spondylitis (TS) from pyogenic spondylitis (PS). METHODS: A total of 254 patients with TS (n = 141) or PS (n = 113) were randomly divided into training...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Shaofeng, Wei, Yating, Li, Hao, Zhou, Chenxing, Chen, Tianyou, Zhu, Jichong, Liu, Lu, Wu, Siling, Ma, Fengzhi, Ye, Zhen, Deng, Guobing, Yao, Yuanlin, Fan, Binguang, Liao, Shian, Huang, Shengsheng, Sun, Xuhua, Chen, Liyi, Guo, Hao, Chen, Wuhua, Zhan, Xinli, Liu, Chong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758984/
https://www.ncbi.nlm.nih.gov/pubmed/36536861
http://dx.doi.org/10.2147/IDR.S388868
_version_ 1784852155506622464
author Wu, Shaofeng
Wei, Yating
Li, Hao
Zhou, Chenxing
Chen, Tianyou
Zhu, Jichong
Liu, Lu
Wu, Siling
Ma, Fengzhi
Ye, Zhen
Deng, Guobing
Yao, Yuanlin
Fan, Binguang
Liao, Shian
Huang, Shengsheng
Sun, Xuhua
Chen, Liyi
Guo, Hao
Chen, Wuhua
Zhan, Xinli
Liu, Chong
author_facet Wu, Shaofeng
Wei, Yating
Li, Hao
Zhou, Chenxing
Chen, Tianyou
Zhu, Jichong
Liu, Lu
Wu, Siling
Ma, Fengzhi
Ye, Zhen
Deng, Guobing
Yao, Yuanlin
Fan, Binguang
Liao, Shian
Huang, Shengsheng
Sun, Xuhua
Chen, Liyi
Guo, Hao
Chen, Wuhua
Zhan, Xinli
Liu, Chong
author_sort Wu, Shaofeng
collection PubMed
description OBJECTIVE: The study aimed to develop and validate a nomogram model with clinical risk factors and radiomic features for differentiating tuberculous spondylitis (TS) from pyogenic spondylitis (PS). METHODS: A total of 254 patients with TS (n = 141) or PS (n = 113) were randomly divided into training (n = 180) and validation (n = 74) groups. In addition, 43 patients (TS = 22 and PS = 21) were collected to construct a test cohort. t-test analysis, de-redundancy analysis, and minimum absolute shrinkage and selection operator (lasso) algorithm were utilized on the training set to obtain the optimal radiomics features from computed tomography (CT) for constructing the radiomics model and determine the radiomics score (Rad-score). Eight clinical risk predictors were identified to develop the clinical model. Combined with clinical risk predictors and Rad-scores, a nomogram model was constructed using multivariate logistic regression analysis. RESULTS: A total of 1781 features were extracted, and 12 optimal radiomic features were utilized to construct the radiomic model and determine the Rad-score. The combined clinical radiomics model revealed good discrimination performance in both the training cohort and the validation cohort (AUC = 0.891 and 0.830) and was superior to the clinical (AUC = 0.807 and 0.785) and radiomics (AUC = 0.796 and 0.811) models. The calibration curve and DCA also depicted that the nomogram had better clinical efficacy. The discriminative performance of the model is well validated in the test cohort (AUC=0.877). CONCLUSION: The clinical radiomic nomogram could serve as a promising predictive tool for differentiating TS from PS, which could be helpful for clinical decision-making.
format Online
Article
Text
id pubmed-9758984
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-97589842022-12-18 A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors Wu, Shaofeng Wei, Yating Li, Hao Zhou, Chenxing Chen, Tianyou Zhu, Jichong Liu, Lu Wu, Siling Ma, Fengzhi Ye, Zhen Deng, Guobing Yao, Yuanlin Fan, Binguang Liao, Shian Huang, Shengsheng Sun, Xuhua Chen, Liyi Guo, Hao Chen, Wuhua Zhan, Xinli Liu, Chong Infect Drug Resist Original Research OBJECTIVE: The study aimed to develop and validate a nomogram model with clinical risk factors and radiomic features for differentiating tuberculous spondylitis (TS) from pyogenic spondylitis (PS). METHODS: A total of 254 patients with TS (n = 141) or PS (n = 113) were randomly divided into training (n = 180) and validation (n = 74) groups. In addition, 43 patients (TS = 22 and PS = 21) were collected to construct a test cohort. t-test analysis, de-redundancy analysis, and minimum absolute shrinkage and selection operator (lasso) algorithm were utilized on the training set to obtain the optimal radiomics features from computed tomography (CT) for constructing the radiomics model and determine the radiomics score (Rad-score). Eight clinical risk predictors were identified to develop the clinical model. Combined with clinical risk predictors and Rad-scores, a nomogram model was constructed using multivariate logistic regression analysis. RESULTS: A total of 1781 features were extracted, and 12 optimal radiomic features were utilized to construct the radiomic model and determine the Rad-score. The combined clinical radiomics model revealed good discrimination performance in both the training cohort and the validation cohort (AUC = 0.891 and 0.830) and was superior to the clinical (AUC = 0.807 and 0.785) and radiomics (AUC = 0.796 and 0.811) models. The calibration curve and DCA also depicted that the nomogram had better clinical efficacy. The discriminative performance of the model is well validated in the test cohort (AUC=0.877). CONCLUSION: The clinical radiomic nomogram could serve as a promising predictive tool for differentiating TS from PS, which could be helpful for clinical decision-making. Dove 2022-12-13 /pmc/articles/PMC9758984/ /pubmed/36536861 http://dx.doi.org/10.2147/IDR.S388868 Text en © 2022 Wu et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Wu, Shaofeng
Wei, Yating
Li, Hao
Zhou, Chenxing
Chen, Tianyou
Zhu, Jichong
Liu, Lu
Wu, Siling
Ma, Fengzhi
Ye, Zhen
Deng, Guobing
Yao, Yuanlin
Fan, Binguang
Liao, Shian
Huang, Shengsheng
Sun, Xuhua
Chen, Liyi
Guo, Hao
Chen, Wuhua
Zhan, Xinli
Liu, Chong
A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors
title A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors
title_full A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors
title_fullStr A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors
title_full_unstemmed A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors
title_short A Predictive Clinical-Radiomics Nomogram for Differentiating Tuberculous Spondylitis from Pyogenic Spondylitis Using CT and Clinical Risk Factors
title_sort predictive clinical-radiomics nomogram for differentiating tuberculous spondylitis from pyogenic spondylitis using ct and clinical risk factors
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758984/
https://www.ncbi.nlm.nih.gov/pubmed/36536861
http://dx.doi.org/10.2147/IDR.S388868
work_keys_str_mv AT wushaofeng apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT weiyating apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT lihao apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT zhouchenxing apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT chentianyou apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT zhujichong apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT liulu apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT wusiling apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT mafengzhi apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT yezhen apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT dengguobing apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT yaoyuanlin apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT fanbinguang apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT liaoshian apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT huangshengsheng apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT sunxuhua apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT chenliyi apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT guohao apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT chenwuhua apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT zhanxinli apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT liuchong apredictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT wushaofeng predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT weiyating predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT lihao predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT zhouchenxing predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT chentianyou predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT zhujichong predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT liulu predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT wusiling predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT mafengzhi predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT yezhen predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT dengguobing predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT yaoyuanlin predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT fanbinguang predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT liaoshian predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT huangshengsheng predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT sunxuhua predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT chenliyi predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT guohao predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT chenwuhua predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT zhanxinli predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors
AT liuchong predictiveclinicalradiomicsnomogramfordifferentiatingtuberculousspondylitisfrompyogenicspondylitisusingctandclinicalriskfactors