Cargando…
A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel
In this work, a mathematical model consisting of a compartmentalized coupled nonlinear system of fractional order differential equations describing the transmission dynamics of COVID-19 is studied. The fractional derivative is taken in the Atangana-Baleanu-Caputo sense. The basic dynamic properties...
Autores principales: | Okposo, Newton I., Adewole, Matthew O., Okposo, Emamuzo N., Ojarikre, Herietta I., Abdullah, Farah A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759323/ https://www.ncbi.nlm.nih.gov/pubmed/36569784 http://dx.doi.org/10.1016/j.chaos.2021.111427 |
Ejemplares similares
-
A novel covid-19 mathematical model with fractional derivatives: Singular and nonsingular kernels
por: Zhang, Zizhen
Publicado: (2020) -
Fractional Moore-Gibson-Thompson heat transfer model with nonlocal and nonsingular kernels of a rotating viscoelastic annular cylinder with changeable thermal properties
por: Abouelregal, Ahmed E., et al.
Publicado: (2022) -
Tangent nonlinear equation in context of fractal fractional operators with nonsingular kernel
por: Zafar, Zain Ul Abadin, et al.
Publicado: (2021) -
A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel
por: Abdeljawad, Thabet
Publicado: (2017) -
A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel
por: Boudaoui, Ahmed, et al.
Publicado: (2021)