Cargando…
Comparative assessment of modeling deep learning networks for modeling ground-level ozone concentrations of pandemic lock-down period
Covid-19 pandemic lock-down has resulted significant differences in air quality levels all over the world. In contrary to decrease seen in primary pollutant species, many of the countries have experienced elevated ground-level ozone levels in this period. Air pollution forecast gains more importance...
Autores principales: | Ekinci, Ekin, İlhan Omurca, Sevinç, Özbay, Bilge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759485/ https://www.ncbi.nlm.nih.gov/pubmed/36570568 http://dx.doi.org/10.1016/j.ecolmodel.2021.109676 |
Ejemplares similares
-
Lower air pollution during COVID-19 lock-down: improving models and methods estimating ozone impacts on crops
por: Dentener, Frank, et al.
Publicado: (2020) -
The ground-level ozone concentration in forest and urban environments in central Slovakia
por: Janík, Rastislav, et al.
Publicado: (2022) -
Locked Down, Locked Out
por: Schenwar, Maya
Publicado: (2014) -
In systemic sclerosis patients the anxiety disorder and Raynaud’s phenomenon are increased during lock down period for COVID-19 pandemic
por: Gigante, Antonietta, et al.
Publicado: (2020) -
Preventive control strategy on second wave of Covid-19 pandemic model incorporating lock-down effect
por: Basu, Sanjoy, et al.
Publicado: (2022)