Cargando…
Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens
BACKGROUND: Nowadays, there is a growing global concern over rapidly increasing screen time (smartphones, tablets, and computers). An accumulating body of evidence indicates that prolonged exposure to short-wavelength visible light (blue component) emitted from digital screens may cause cancer. The...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shiraz University of Medical Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759638/ https://www.ncbi.nlm.nih.gov/pubmed/36569561 http://dx.doi.org/10.31661/jbpe.v0i0.2105-1341 |
_version_ | 1784852275933478912 |
---|---|
author | Mortazavi, Seyed Ali Reza Tahmasebi, Sedigheh Parsaei, Hossein Taleie, Abdorasoul Faraz, Mehdi Rezaianzadeh, Abbas Zamani, Atefeh Zamani, Ali Mortazavi, Seyed Mohammad Javad |
author_facet | Mortazavi, Seyed Ali Reza Tahmasebi, Sedigheh Parsaei, Hossein Taleie, Abdorasoul Faraz, Mehdi Rezaianzadeh, Abbas Zamani, Atefeh Zamani, Ali Mortazavi, Seyed Mohammad Javad |
author_sort | Mortazavi, Seyed Ali Reza |
collection | PubMed |
description | BACKGROUND: Nowadays, there is a growing global concern over rapidly increasing screen time (smartphones, tablets, and computers). An accumulating body of evidence indicates that prolonged exposure to short-wavelength visible light (blue component) emitted from digital screens may cause cancer. The application of machine learning (ML) methods has significantly improved the accuracy of predictions in fields such as cancer susceptibility, recurrence, and survival. OBJECTIVE: To develop an ML model for predicting the risk of breast cancer in women via several parameters related to exposure to ionizing and non-ionizing radiation. MATERIAL AND METHODS: In this analytical study, three ML models Random Forest (RF), Support Vector Machine (SVM), and Multi-Layer Perceptron Neural Network (MLPNN) were used to analyze data collected from 603 cases, including 309 breast cancer cases and 294 gender and age-matched controls. Standard face-to-face interviews were performed using a standard questionnaire for data collection. RESULTS: The examined models RF, SVM, and MLPNN performed well for correctly classifying cases with breast cancer and the healthy ones (mean sensitivity> 97.2%, mean specificity >96.4%, and average accuracy >97.1%). CONCLUSION: Machine learning models can be used to effectively predict the risk of breast cancer via the history of exposure to ionizing and non-ionizing radiation (including blue light and screen time issues) parameters. The performance of the developed methods is encouraging; nevertheless, further investigation is required to confirm that machine learning techniques can diagnose breast cancer with relatively high accuracies automatically. |
format | Online Article Text |
id | pubmed-9759638 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Shiraz University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-97596382022-12-23 Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens Mortazavi, Seyed Ali Reza Tahmasebi, Sedigheh Parsaei, Hossein Taleie, Abdorasoul Faraz, Mehdi Rezaianzadeh, Abbas Zamani, Atefeh Zamani, Ali Mortazavi, Seyed Mohammad Javad J Biomed Phys Eng Original Article BACKGROUND: Nowadays, there is a growing global concern over rapidly increasing screen time (smartphones, tablets, and computers). An accumulating body of evidence indicates that prolonged exposure to short-wavelength visible light (blue component) emitted from digital screens may cause cancer. The application of machine learning (ML) methods has significantly improved the accuracy of predictions in fields such as cancer susceptibility, recurrence, and survival. OBJECTIVE: To develop an ML model for predicting the risk of breast cancer in women via several parameters related to exposure to ionizing and non-ionizing radiation. MATERIAL AND METHODS: In this analytical study, three ML models Random Forest (RF), Support Vector Machine (SVM), and Multi-Layer Perceptron Neural Network (MLPNN) were used to analyze data collected from 603 cases, including 309 breast cancer cases and 294 gender and age-matched controls. Standard face-to-face interviews were performed using a standard questionnaire for data collection. RESULTS: The examined models RF, SVM, and MLPNN performed well for correctly classifying cases with breast cancer and the healthy ones (mean sensitivity> 97.2%, mean specificity >96.4%, and average accuracy >97.1%). CONCLUSION: Machine learning models can be used to effectively predict the risk of breast cancer via the history of exposure to ionizing and non-ionizing radiation (including blue light and screen time issues) parameters. The performance of the developed methods is encouraging; nevertheless, further investigation is required to confirm that machine learning techniques can diagnose breast cancer with relatively high accuracies automatically. Shiraz University of Medical Sciences 2022-12-01 /pmc/articles/PMC9759638/ /pubmed/36569561 http://dx.doi.org/10.31661/jbpe.v0i0.2105-1341 Text en Copyright: © Journal of Biomedical Physics and Engineering https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 Unported License, ( http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Mortazavi, Seyed Ali Reza Tahmasebi, Sedigheh Parsaei, Hossein Taleie, Abdorasoul Faraz, Mehdi Rezaianzadeh, Abbas Zamani, Atefeh Zamani, Ali Mortazavi, Seyed Mohammad Javad Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens |
title | Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens |
title_full | Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens |
title_fullStr | Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens |
title_full_unstemmed | Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens |
title_short | Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens |
title_sort | machine learning models for predicting breast cancer risk in women exposed to blue light from digital screens |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759638/ https://www.ncbi.nlm.nih.gov/pubmed/36569561 http://dx.doi.org/10.31661/jbpe.v0i0.2105-1341 |
work_keys_str_mv | AT mortazaviseyedalireza machinelearningmodelsforpredictingbreastcancerriskinwomenexposedtobluelightfromdigitalscreens AT tahmasebisedigheh machinelearningmodelsforpredictingbreastcancerriskinwomenexposedtobluelightfromdigitalscreens AT parsaeihossein machinelearningmodelsforpredictingbreastcancerriskinwomenexposedtobluelightfromdigitalscreens AT taleieabdorasoul machinelearningmodelsforpredictingbreastcancerriskinwomenexposedtobluelightfromdigitalscreens AT farazmehdi machinelearningmodelsforpredictingbreastcancerriskinwomenexposedtobluelightfromdigitalscreens AT rezaianzadehabbas machinelearningmodelsforpredictingbreastcancerriskinwomenexposedtobluelightfromdigitalscreens AT zamaniatefeh machinelearningmodelsforpredictingbreastcancerriskinwomenexposedtobluelightfromdigitalscreens AT zamaniali machinelearningmodelsforpredictingbreastcancerriskinwomenexposedtobluelightfromdigitalscreens AT mortazaviseyedmohammadjavad machinelearningmodelsforpredictingbreastcancerriskinwomenexposedtobluelightfromdigitalscreens |