Cargando…
Detecting fake news by exploring the consistency of multimodal data
During the outbreak of the new Coronavirus (2019-nCoV) in 2020, the spread of fake news has caused serious social panic. Fake news often uses multimedia information such as text and image to mislead readers, spreading and expanding its influence. One of the most important problems in fake news detec...
Autores principales: | Xue, Junxiao, Wang, Yabo, Tian, Yichen, Li, Yafei, Shi, Lei, Wei, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759663/ https://www.ncbi.nlm.nih.gov/pubmed/36567974 http://dx.doi.org/10.1016/j.ipm.2021.102610 |
Ejemplares similares
-
An image and text-based multimodal model for detecting fake news in OSN’s
por: Uppada, Santosh Kumar, et al.
Publicado: (2022) -
Exploring Thematic Coherence in Fake News
por: Dogo, Martins Samuel, et al.
Publicado: (2020) -
“Fake Tan” or “Fake News”?
por: Meyer, Georg, et al.
Publicado: (2020) -
Multimodal Fake-News Recognition Using Ensemble of Deep Learners
por: Al Obaid, Abdulhameed, et al.
Publicado: (2022) -
CB-Fake: A multimodal deep learning framework for automatic fake news detection using capsule neural network and BERT
por: Palani, Balasubramanian, et al.
Publicado: (2021)