Cargando…

Search like an expert: Reducing expertise disparity using a hybrid neural index for COVID-19 queries

Consumers from non-medical backgrounds often look for information regarding a specific medical information need; however, they are limited by their lack of medical knowledge and may not be able to find reputable resources. As a case study, we investigate reducing this knowledge barrier to allow cons...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Vincent, Rybinski, Maciej, Karimi, Sarvnaz, Xing, Zhenchang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759932/
https://www.ncbi.nlm.nih.gov/pubmed/35144000
http://dx.doi.org/10.1016/j.jbi.2022.104005
Descripción
Sumario:Consumers from non-medical backgrounds often look for information regarding a specific medical information need; however, they are limited by their lack of medical knowledge and may not be able to find reputable resources. As a case study, we investigate reducing this knowledge barrier to allow consumers to achieve search effectiveness comparable to that of an expert, or a medical professional, for COVID-19 related questions. We introduce and evaluate a hybrid index model that allows a consumer to formulate queries using consumer language to find relevant answers to COVID-19 questions. Our aim is to reduce performance degradation between medical professional queries and those of a consumer. We use a universal sentence embedding model to project consumer queries into the same semantic space as professional queries. We then incorporate sentence embeddings into a search framework alongside an inverted index. Documents from this index are retrieved using a novel scoring function that considers sentence embeddings and BM25 scoring. We find that our framework alleviates the expertise disparity, which we validate using an additional set of crowdsourced—consumer—queries even in an unsupervised setting. We also propose an extension of our method, where the sentence encoder is optimised in a supervised setup. Our framework allows for a consumer to search using consumer queries to match the search performance with that of a professional.