Cargando…
Automatic cough detection from realistic audio recordings using C-BiLSTM with boundary regression
Automatic cough detection in the patients’ realistic audio recordings is of great significance to diagnose and monitor respiratory diseases, such as COVID-19. Many detection methods have been developed so far, but they are still unable to meet the practical requirements. In this paper, we present a...
Autores principales: | You, Mingyu, Wang, Weihao, Li, You, Liu, Jiaming, Xu, Xianghuai, Qiu, Zhongmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9760237/ https://www.ncbi.nlm.nih.gov/pubmed/36569172 http://dx.doi.org/10.1016/j.bspc.2021.103304 |
Ejemplares similares
-
Automatic Modulation Recognition Based on a DCN-BiLSTM Network
por: Liu, Kai, et al.
Publicado: (2021) -
RNN and BiLSTM Fusion for Accurate Automatic Epileptic Seizure Diagnosis Using EEG Signals
por: Samee, Nagwan Abdel, et al.
Publicado: (2022) -
Human Activity Recognition Based on Residual Network and BiLSTM
por: Li, Yong, et al.
Publicado: (2022) -
Digitization of Handwritten Chess Scoresheets with a BiLSTM Network
por: Majid, Nishatul, et al.
Publicado: (2022) -
Network Intrusion Detection Method Based on FCWGAN and BiLSTM
por: Ma, Zexuan, et al.
Publicado: (2022)