Cargando…
Chang impact analysis of level 3 COVID-19 alert on air pollution indicators using artificial neural network
In this study, mean monthly and diurnal variations in fine particulate matters (PM(2.5)), nitrate, sulfate, and gaseous precursors were investigated during the Level 3 COVID-19 alert from May 19 to July 27 in 2021. For comparison, the historical data during the identical period in 2019 and 2020 were...
Autores principales: | Lin, Guan-Yu, Chen, Wei-Yea, Chieh, Shao-Heng, Yang, Yi-Tsung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9760264/ https://www.ncbi.nlm.nih.gov/pubmed/36568861 http://dx.doi.org/10.1016/j.ecoinf.2022.101674 |
Ejemplares similares
-
Estimation of COVID-19 patient numbers using artificial neural networks based on air pollutant concentration levels
por: Keskin, Gülşen Aydın, et al.
Publicado: (2022) -
Principal Component Regression and Artificial Neural Network: The Prediction of Air Pollution Index (API)
por: Hua, Ang Kean, et al.
Publicado: (2021) -
Modelling of Urban Air Pollutant Concentrations with Artificial Neural Networks Using Novel Input Variables
por: Goulier, Laura, et al.
Publicado: (2020) -
Air quality assessment and pollution forecasting using artificial neural networks in Metropolitan Lima-Peru
por: Cordova, Chardin Hoyos, et al.
Publicado: (2021) -
Intraprocedure Artificial Intelligence Alert System for Colonoscopy Examination
por: Hsu, Chen-Ming, et al.
Publicado: (2023)