Cargando…
BCM3D 2.0: accurate segmentation of single bacterial cells in dense biofilms using computationally generated intermediate image representations
Accurate detection and segmentation of single cells in three-dimensional (3D) fluorescence time-lapse images is essential for observing individual cell behaviors in large bacterial communities called biofilms. Recent progress in machine-learning-based image analysis is providing this capability with...
Autores principales: | Zhang, Ji, Wang, Yibo, Donarski, Eric D., Toma, Tanjin T., Miles, Madeline T., Acton, Scott T., Gahlmann, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9760640/ https://www.ncbi.nlm.nih.gov/pubmed/36529755 http://dx.doi.org/10.1038/s41522-022-00362-4 |
Ejemplares similares
-
Optically Accessible Microfluidic Flow Channels for
Noninvasive High-Resolution Biofilm Imaging Using Lattice Light Sheet
Microscopy
por: Zhang, Ji, et al.
Publicado: (2021) -
Non-invasive single-cell morphometry in living bacterial biofilms
por: Zhang, Mingxing, et al.
Publicado: (2020) -
Energetics of stochastic BCM type synaptic plasticity and storing of accurate information
por: Karbowski, Jan
Publicado: (2021) -
ATLAS diamond BCM
por: Dolenc, I, et al.
Publicado: (2008) -
CMS BRIL PLT/BCM1F/BCM1L Transport and Installation
por: Delannoy Sotomayor, Andres Guillermo, et al.
Publicado: (2021)