Cargando…

Representation of nuclear magnetic moments via a Clifford algebra formulation of Bohm’s hidden variables

In this paper, we outline the research conducted by the first named author and his associates on the axiom-preserving, thus isotopic completion of quantum mechanics into hadronic mechanics according to the historical legacy by A. Einstein, B. Podolsky and N. Rosen that quantum mechanics is not a com...

Descripción completa

Detalles Bibliográficos
Autores principales: Santilli, Ruggero Maria, Sobczyk, Garret
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9760646/
https://www.ncbi.nlm.nih.gov/pubmed/36529817
http://dx.doi.org/10.1038/s41598-022-24970-4
Descripción
Sumario:In this paper, we outline the research conducted by the first named author and his associates on the axiom-preserving, thus isotopic completion of quantum mechanics into hadronic mechanics according to the historical legacy by A. Einstein, B. Podolsky and N. Rosen that quantum mechanics is not a complete theory and review the ensuing exact representation of the magnetic moment and spin of the Deuteron in its ground state thanks to the isotopic completion of Pauli’s matrices with an explicit and concrete content of D. Bohm’s hidden variable [Formula: see text] . We then outline the independent studies conducted by the second named author on the representation of the conventional Pauli’s matrices via geometric Clifford algebras. We finally show that the combination of the two studies allows a mathematically rigorous, numerically exact and time invariant geometric representation of the magnetic moment, spin and hidden variable of the Deuteron in its ground state.