Cargando…

The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity

BACKGROUND: Structured Medication Reviews (SMRs) are intended to help deliver the NHS Long Term Plan for medicines optimisation in people living with multiple long-term conditions and polypharmacy. It is challenging to gather the information needed for these reviews due to poor integration of health...

Descripción completa

Detalles Bibliográficos
Autores principales: Walker, Lauren E, Abuzour, Aseel S, Bollegala, Danushka, Clegg, Andrew, Gabbay, Mark, Griffiths, Alan, Kullu, Cecil, Leeming, Gary, Mair, Frances S, Maskell, Simon, Relton, Samuel, Ruddle, Roy A, Shantsila, Eduard, Sperrin, Matthew, Van Staa, Tjeerd, Woodall, Alan, Buchan, Iain
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761229/
https://www.ncbi.nlm.nih.gov/pubmed/36545235
http://dx.doi.org/10.1177/26335565221145493
_version_ 1784852664080662528
author Walker, Lauren E
Abuzour, Aseel S
Bollegala, Danushka
Clegg, Andrew
Gabbay, Mark
Griffiths, Alan
Kullu, Cecil
Leeming, Gary
Mair, Frances S
Maskell, Simon
Relton, Samuel
Ruddle, Roy A
Shantsila, Eduard
Sperrin, Matthew
Van Staa, Tjeerd
Woodall, Alan
Buchan, Iain
author_facet Walker, Lauren E
Abuzour, Aseel S
Bollegala, Danushka
Clegg, Andrew
Gabbay, Mark
Griffiths, Alan
Kullu, Cecil
Leeming, Gary
Mair, Frances S
Maskell, Simon
Relton, Samuel
Ruddle, Roy A
Shantsila, Eduard
Sperrin, Matthew
Van Staa, Tjeerd
Woodall, Alan
Buchan, Iain
author_sort Walker, Lauren E
collection PubMed
description BACKGROUND: Structured Medication Reviews (SMRs) are intended to help deliver the NHS Long Term Plan for medicines optimisation in people living with multiple long-term conditions and polypharmacy. It is challenging to gather the information needed for these reviews due to poor integration of health records across providers and there is little guidance on how to identify those patients most urgently requiring review. OBJECTIVE: To extract information from scattered clinical records on how health and medications change over time, apply interpretable artificial intelligence (AI) approaches to predict risks of poor outcomes and overlay this information on care records to inform SMRs. We will pilot this approach in primary care prescribing audit and feedback systems, and co-design future medicines optimisation decision support systems. DESIGN: DynAIRx will target potentially problematic polypharmacy in three key multimorbidity groups, namely, people with (a) mental and physical health problems, (b) four or more long-term conditions taking ten or more drugs and (c) older age and frailty. Structured clinical data will be drawn from integrated care records (general practice, hospital, and social care) covering an ∼11m population supplemented with Natural Language Processing (NLP) of unstructured clinical text. AI systems will be trained to identify patterns of conditions, medications, tests, and clinical contacts preceding adverse events in order to identify individuals who might benefit most from an SMR. DISCUSSION: By implementing and evaluating an AI-augmented visualisation of care records in an existing prescribing audit and feedback system we will create a learning system for medicines optimisation, co-designed throughout with end-users and patients.
format Online
Article
Text
id pubmed-9761229
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-97612292022-12-20 The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity Walker, Lauren E Abuzour, Aseel S Bollegala, Danushka Clegg, Andrew Gabbay, Mark Griffiths, Alan Kullu, Cecil Leeming, Gary Mair, Frances S Maskell, Simon Relton, Samuel Ruddle, Roy A Shantsila, Eduard Sperrin, Matthew Van Staa, Tjeerd Woodall, Alan Buchan, Iain J Multimorb Comorb Study Protocol BACKGROUND: Structured Medication Reviews (SMRs) are intended to help deliver the NHS Long Term Plan for medicines optimisation in people living with multiple long-term conditions and polypharmacy. It is challenging to gather the information needed for these reviews due to poor integration of health records across providers and there is little guidance on how to identify those patients most urgently requiring review. OBJECTIVE: To extract information from scattered clinical records on how health and medications change over time, apply interpretable artificial intelligence (AI) approaches to predict risks of poor outcomes and overlay this information on care records to inform SMRs. We will pilot this approach in primary care prescribing audit and feedback systems, and co-design future medicines optimisation decision support systems. DESIGN: DynAIRx will target potentially problematic polypharmacy in three key multimorbidity groups, namely, people with (a) mental and physical health problems, (b) four or more long-term conditions taking ten or more drugs and (c) older age and frailty. Structured clinical data will be drawn from integrated care records (general practice, hospital, and social care) covering an ∼11m population supplemented with Natural Language Processing (NLP) of unstructured clinical text. AI systems will be trained to identify patterns of conditions, medications, tests, and clinical contacts preceding adverse events in order to identify individuals who might benefit most from an SMR. DISCUSSION: By implementing and evaluating an AI-augmented visualisation of care records in an existing prescribing audit and feedback system we will create a learning system for medicines optimisation, co-designed throughout with end-users and patients. SAGE Publications 2022-12-15 /pmc/articles/PMC9761229/ /pubmed/36545235 http://dx.doi.org/10.1177/26335565221145493 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Study Protocol
Walker, Lauren E
Abuzour, Aseel S
Bollegala, Danushka
Clegg, Andrew
Gabbay, Mark
Griffiths, Alan
Kullu, Cecil
Leeming, Gary
Mair, Frances S
Maskell, Simon
Relton, Samuel
Ruddle, Roy A
Shantsila, Eduard
Sperrin, Matthew
Van Staa, Tjeerd
Woodall, Alan
Buchan, Iain
The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity
title The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity
title_full The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity
title_fullStr The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity
title_full_unstemmed The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity
title_short The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity
title_sort dynairx project protocol: artificial intelligence for dynamic prescribing optimisation and care integration in multimorbidity
topic Study Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761229/
https://www.ncbi.nlm.nih.gov/pubmed/36545235
http://dx.doi.org/10.1177/26335565221145493
work_keys_str_mv AT walkerlaurene thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT abuzouraseels thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT bollegaladanushka thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT cleggandrew thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT gabbaymark thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT griffithsalan thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT kullucecil thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT leeminggary thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT mairfrancess thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT maskellsimon thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT reltonsamuel thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT ruddleroya thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT shantsilaeduard thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT sperrinmatthew thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT vanstaatjeerd thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT woodallalan thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT buchaniain thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT walkerlaurene dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT abuzouraseels dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT bollegaladanushka dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT cleggandrew dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT gabbaymark dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT griffithsalan dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT kullucecil dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT leeminggary dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT mairfrancess dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT maskellsimon dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT reltonsamuel dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT ruddleroya dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT shantsilaeduard dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT sperrinmatthew dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT vanstaatjeerd dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT woodallalan dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity
AT buchaniain dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity