Cargando…
The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity
BACKGROUND: Structured Medication Reviews (SMRs) are intended to help deliver the NHS Long Term Plan for medicines optimisation in people living with multiple long-term conditions and polypharmacy. It is challenging to gather the information needed for these reviews due to poor integration of health...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761229/ https://www.ncbi.nlm.nih.gov/pubmed/36545235 http://dx.doi.org/10.1177/26335565221145493 |
_version_ | 1784852664080662528 |
---|---|
author | Walker, Lauren E Abuzour, Aseel S Bollegala, Danushka Clegg, Andrew Gabbay, Mark Griffiths, Alan Kullu, Cecil Leeming, Gary Mair, Frances S Maskell, Simon Relton, Samuel Ruddle, Roy A Shantsila, Eduard Sperrin, Matthew Van Staa, Tjeerd Woodall, Alan Buchan, Iain |
author_facet | Walker, Lauren E Abuzour, Aseel S Bollegala, Danushka Clegg, Andrew Gabbay, Mark Griffiths, Alan Kullu, Cecil Leeming, Gary Mair, Frances S Maskell, Simon Relton, Samuel Ruddle, Roy A Shantsila, Eduard Sperrin, Matthew Van Staa, Tjeerd Woodall, Alan Buchan, Iain |
author_sort | Walker, Lauren E |
collection | PubMed |
description | BACKGROUND: Structured Medication Reviews (SMRs) are intended to help deliver the NHS Long Term Plan for medicines optimisation in people living with multiple long-term conditions and polypharmacy. It is challenging to gather the information needed for these reviews due to poor integration of health records across providers and there is little guidance on how to identify those patients most urgently requiring review. OBJECTIVE: To extract information from scattered clinical records on how health and medications change over time, apply interpretable artificial intelligence (AI) approaches to predict risks of poor outcomes and overlay this information on care records to inform SMRs. We will pilot this approach in primary care prescribing audit and feedback systems, and co-design future medicines optimisation decision support systems. DESIGN: DynAIRx will target potentially problematic polypharmacy in three key multimorbidity groups, namely, people with (a) mental and physical health problems, (b) four or more long-term conditions taking ten or more drugs and (c) older age and frailty. Structured clinical data will be drawn from integrated care records (general practice, hospital, and social care) covering an ∼11m population supplemented with Natural Language Processing (NLP) of unstructured clinical text. AI systems will be trained to identify patterns of conditions, medications, tests, and clinical contacts preceding adverse events in order to identify individuals who might benefit most from an SMR. DISCUSSION: By implementing and evaluating an AI-augmented visualisation of care records in an existing prescribing audit and feedback system we will create a learning system for medicines optimisation, co-designed throughout with end-users and patients. |
format | Online Article Text |
id | pubmed-9761229 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-97612292022-12-20 The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity Walker, Lauren E Abuzour, Aseel S Bollegala, Danushka Clegg, Andrew Gabbay, Mark Griffiths, Alan Kullu, Cecil Leeming, Gary Mair, Frances S Maskell, Simon Relton, Samuel Ruddle, Roy A Shantsila, Eduard Sperrin, Matthew Van Staa, Tjeerd Woodall, Alan Buchan, Iain J Multimorb Comorb Study Protocol BACKGROUND: Structured Medication Reviews (SMRs) are intended to help deliver the NHS Long Term Plan for medicines optimisation in people living with multiple long-term conditions and polypharmacy. It is challenging to gather the information needed for these reviews due to poor integration of health records across providers and there is little guidance on how to identify those patients most urgently requiring review. OBJECTIVE: To extract information from scattered clinical records on how health and medications change over time, apply interpretable artificial intelligence (AI) approaches to predict risks of poor outcomes and overlay this information on care records to inform SMRs. We will pilot this approach in primary care prescribing audit and feedback systems, and co-design future medicines optimisation decision support systems. DESIGN: DynAIRx will target potentially problematic polypharmacy in three key multimorbidity groups, namely, people with (a) mental and physical health problems, (b) four or more long-term conditions taking ten or more drugs and (c) older age and frailty. Structured clinical data will be drawn from integrated care records (general practice, hospital, and social care) covering an ∼11m population supplemented with Natural Language Processing (NLP) of unstructured clinical text. AI systems will be trained to identify patterns of conditions, medications, tests, and clinical contacts preceding adverse events in order to identify individuals who might benefit most from an SMR. DISCUSSION: By implementing and evaluating an AI-augmented visualisation of care records in an existing prescribing audit and feedback system we will create a learning system for medicines optimisation, co-designed throughout with end-users and patients. SAGE Publications 2022-12-15 /pmc/articles/PMC9761229/ /pubmed/36545235 http://dx.doi.org/10.1177/26335565221145493 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Study Protocol Walker, Lauren E Abuzour, Aseel S Bollegala, Danushka Clegg, Andrew Gabbay, Mark Griffiths, Alan Kullu, Cecil Leeming, Gary Mair, Frances S Maskell, Simon Relton, Samuel Ruddle, Roy A Shantsila, Eduard Sperrin, Matthew Van Staa, Tjeerd Woodall, Alan Buchan, Iain The DynAIRx Project Protocol: Artificial Intelligence for dynamic prescribing optimisation and care integration in multimorbidity |
title | The DynAIRx Project Protocol: Artificial Intelligence for dynamic
prescribing optimisation and care integration in multimorbidity |
title_full | The DynAIRx Project Protocol: Artificial Intelligence for dynamic
prescribing optimisation and care integration in multimorbidity |
title_fullStr | The DynAIRx Project Protocol: Artificial Intelligence for dynamic
prescribing optimisation and care integration in multimorbidity |
title_full_unstemmed | The DynAIRx Project Protocol: Artificial Intelligence for dynamic
prescribing optimisation and care integration in multimorbidity |
title_short | The DynAIRx Project Protocol: Artificial Intelligence for dynamic
prescribing optimisation and care integration in multimorbidity |
title_sort | dynairx project protocol: artificial intelligence for dynamic
prescribing optimisation and care integration in multimorbidity |
topic | Study Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761229/ https://www.ncbi.nlm.nih.gov/pubmed/36545235 http://dx.doi.org/10.1177/26335565221145493 |
work_keys_str_mv | AT walkerlaurene thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT abuzouraseels thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT bollegaladanushka thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT cleggandrew thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT gabbaymark thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT griffithsalan thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT kullucecil thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT leeminggary thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT mairfrancess thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT maskellsimon thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT reltonsamuel thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT ruddleroya thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT shantsilaeduard thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT sperrinmatthew thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT vanstaatjeerd thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT woodallalan thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT buchaniain thedynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT walkerlaurene dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT abuzouraseels dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT bollegaladanushka dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT cleggandrew dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT gabbaymark dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT griffithsalan dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT kullucecil dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT leeminggary dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT mairfrancess dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT maskellsimon dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT reltonsamuel dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT ruddleroya dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT shantsilaeduard dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT sperrinmatthew dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT vanstaatjeerd dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT woodallalan dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity AT buchaniain dynairxprojectprotocolartificialintelligencefordynamicprescribingoptimisationandcareintegrationinmultimorbidity |