Cargando…

Assessment of the Effectiveness of Omicron Transmission Mitigation Strategies for European Universities Using an Agent-Based Network Model

BACKGROUND: Returning universities to full on-campus operations while the coronavirus disease 2019 pandemic is ongoing has been a controversial discussion in many countries. The risk of large outbreaks in dense course settings is contrasted by the benefits of in-person teaching. Transmission risk de...

Descripción completa

Detalles Bibliográficos
Autores principales: Lasser, Jana, Hell, Timotheus, Garcia, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761892/
https://www.ncbi.nlm.nih.gov/pubmed/35511587
http://dx.doi.org/10.1093/cid/ciac340
Descripción
Sumario:BACKGROUND: Returning universities to full on-campus operations while the coronavirus disease 2019 pandemic is ongoing has been a controversial discussion in many countries. The risk of large outbreaks in dense course settings is contrasted by the benefits of in-person teaching. Transmission risk depends on a range of parameters, such as vaccination coverage and efficacy, number of contacts, and adoption of nonpharmaceutical intervention measures. Owing to the generalized academic freedom in Europe, many universities are asked to autonomously decide on and implement intervention measures and regulate on-campus operations. In the context of rapidly changing vaccination coverage and parameters of the virus, universities often lack sufficient scientific insight on which to base these decisions. METHODS: To address this problem, we analyzed a calibrated, data-driven agent-based simulation of transmission dynamics among 13 284 students and 1482 faculty members in a medium-sized European university. Wed use a colocation network reconstructed from student enrollment data and calibrate transmission risk based on outbreak size distributions in education institutions. We focused on actionable interventions that are part of the already existing decision process of universities to provide guidance for concrete policy decisions. RESULTS: Here we show that, with the Omicron variant of the severe acute respiratory syndrome coronavirus 2, even a reduction to 25% occupancy and universal mask mandates are not enough to prevent large outbreaks, given the vaccination coverage of about 85% reported for students in Austria. CONCLUSIONS: Our results show that controlling the spread of the virus with available vaccines in combination with nonpharmaceutical intervention measures is not feasible in the university setting if presence of students and faculty on campus is required.