Cargando…
Treatment of missing data in Bayesian network structure learning: an application to linked biomedical and social survey data
BACKGROUND: Availability of linked biomedical and social science data has risen dramatically in past decades, facilitating holistic and systems-based analyses. Among these, Bayesian networks have great potential to tackle complex interdisciplinary problems, because they can easily model inter-relati...
Autores principales: | Ke, Xuejia, Keenan, Katherine, Smith, V. Anne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761946/ https://www.ncbi.nlm.nih.gov/pubmed/36536286 http://dx.doi.org/10.1186/s12874-022-01781-9 |
Ejemplares similares
-
Application of an efficient Bayesian discretization method to biomedical data
por: Lustgarten, Jonathan L, et al.
Publicado: (2011) -
A survey on missing data in machine learning
por: Emmanuel, Tlamelo, et al.
Publicado: (2021) -
Bayesian missing data problems: EM, data augmentation and noniterative computation
por: Tan, Ming T, et al.
Publicado: (2009) -
Learning Bayesian Networks from Correlated Data
por: Bae, Harold, et al.
Publicado: (2016) -
Learning from biomedical linked data to suggest valid pharmacogenes
por: Dalleau, Kevin, et al.
Publicado: (2017)