Cargando…
Joint learning sample similarity and correlation representation for cancer survival prediction
BACKGROUND: As a highly aggressive disease, cancer has been becoming the leading death cause around the world. Accurate prediction of the survival expectancy for cancer patients is significant, which can help clinicians make appropriate therapeutic schemes. With the high-throughput sequencing techno...
Autores principales: | Hao, Yaru, Jing, Xiao-Yuan, Sun, Qixing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761951/ https://www.ncbi.nlm.nih.gov/pubmed/36536289 http://dx.doi.org/10.1186/s12859-022-05110-1 |
Ejemplares similares
-
Cancer survival prediction by learning comprehensive deep feature representation for multiple types of genetic data
por: Hao, Yaru, et al.
Publicado: (2023) -
Continuous Similarity Learning with Shared Neural Semantic Representation for Joint Event Detection and Evolution
por: Zhou, Pengpeng, et al.
Publicado: (2020) -
CAMR: cross-aligned multimodal representation learning for cancer survival prediction
por: Wu, Xingqi, et al.
Publicado: (2023) -
Unsupervised Event Graph Representation and Similarity Learning on Biomedical Literature
por: Frisoni, Giacomo, et al.
Publicado: (2021) -
Variational representational similarity analysis
por: Friston, Karl J., et al.
Publicado: (2019)