Cargando…
Artificial intelligence for the prediction of acute kidney injury during the perioperative period: systematic review and Meta-analysis of diagnostic test accuracy
BACKGROUND: Acute kidney injury (AKI) is independently associated with morbidity and mortality in a wide range of surgical settings. Nowadays, with the increasing use of electronic health records (EHR), advances in patient information retrieval, and cost reduction in clinical informatics, artificial...
Autores principales: | Zhang, Hanfei, Wang, Amanda Y., Wu, Shukun, Ngo, Johnathan, Feng, Yunlin, He, Xin, Zhang, Yingfeng, Wu, Xingwei, Hong, Daqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761969/ https://www.ncbi.nlm.nih.gov/pubmed/36536317 http://dx.doi.org/10.1186/s12882-022-03025-w |
Ejemplares similares
-
Artificial Intelligence as a Triage Tool During the Perioperative Period: Pilot Study of Accuracy and Accessibility for Clinical Application
por: Boyd, Carter, et al.
Publicado: (2023) -
Strabismus and Artificial Intelligence App: Optimizing Diagnostic and Accuracy
por: de Figueiredo, Laura Alves, et al.
Publicado: (2021) -
The potential for artificial intelligence to predict clinical outcomes in patients who have acquired acute kidney injury during the perioperative period
por: Kelly, Barry J., et al.
Publicado: (2021) -
The Diagnostic and Triage Accuracy of the GPT-3 Artificial Intelligence Model
por: Levine, David M, et al.
Publicado: (2023) -
Artificial intelligence for diabetic retinopathy screening: beyond diagnostic accuracy
por: Malerbi, Fernando Korn
Publicado: (2022)