Cargando…
JCBIE: a joint continual learning neural network for biomedical information extraction
Extracting knowledge from heterogeneous data sources is fundamental for the construction of structured biomedical knowledge graphs (BKGs), where entities and relations are represented as nodes and edges in the graphs, respectively. Previous biomedical knowledge extraction methods simply considered l...
Autores principales: | He, Kai, Mao, Rui, Gong, Tieliang, Cambria, Erik, Li, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761970/ https://www.ncbi.nlm.nih.gov/pubmed/36536280 http://dx.doi.org/10.1186/s12859-022-05096-w |
Ejemplares similares
-
Conditional Probability Joint Extraction of Nested Biomedical Events: Design of a Unified Extraction Framework Based on Neural Networks
por: Wang, Yan, et al.
Publicado: (2022) -
A neural joint model for entity and relation extraction from biomedical text
por: Li, Fei, et al.
Publicado: (2017) -
Transfer learning for biomedical named entity recognition with neural networks
por: Giorgi, John M, et al.
Publicado: (2018) -
Combining joint models for biomedical event extraction
por: McClosky, David, et al.
Publicado: (2012) -
Weakly supervised learning of biomedical information extraction from curated data
por: Jain, Suvir, et al.
Publicado: (2016)