Cargando…

A Bioinspired Hierarchical Fast Transport Network Boosting Electrochemical Performance of 3D Printed Electrodes

Current 3D printed electrodes suffer from insufficient multiscale transport speed, which limits the improvement of electrochemical performance of 3D printed electrodes. Herein, a bioinspired hierarchical fast transport network (HFTN) in a 3D printed reduced graphene oxide/carbon nanotube (3DP GC) el...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Bo, Wu, Jiawen, Liang, Zhiqiang, Liang, Wenkai, Yang, He, Li, Dan, Qin, Wei, Peng, Meiwen, Sun, Yinghui, Jiang, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762319/
https://www.ncbi.nlm.nih.gov/pubmed/36285676
http://dx.doi.org/10.1002/advs.202204751
_version_ 1784852840446951424
author Zhao, Bo
Wu, Jiawen
Liang, Zhiqiang
Liang, Wenkai
Yang, He
Li, Dan
Qin, Wei
Peng, Meiwen
Sun, Yinghui
Jiang, Lin
author_facet Zhao, Bo
Wu, Jiawen
Liang, Zhiqiang
Liang, Wenkai
Yang, He
Li, Dan
Qin, Wei
Peng, Meiwen
Sun, Yinghui
Jiang, Lin
author_sort Zhao, Bo
collection PubMed
description Current 3D printed electrodes suffer from insufficient multiscale transport speed, which limits the improvement of electrochemical performance of 3D printed electrodes. Herein, a bioinspired hierarchical fast transport network (HFTN) in a 3D printed reduced graphene oxide/carbon nanotube (3DP GC) electrode demonstrating superior electrochemical performance is constructed. Theoretical calculations reveal that the HFTN of the 3DP GC electrode increases the ion transport rate by more than 50 times and 36 times compared with those of the bulk GC electrode and traditional 3DP GC (T‐3DP GC) electrode, respectively. Compared with carbon paper, carbon cloth, bulk GC electrode, and T‐3DP GC electrode, the HFTN in 3DP GC electrode endows obvious advantages: i) efficient utilization of surface area for uniform catalysts dispersion during electrochemical deposition; ii) efficient utilization of catalysts enables the high mass activity of catalysts and low overpotential of electrode in electrocatalytic reaction. The cell of 3DP GC/Ni‐NiO||3DP GC/NiS(2) demonstrates a low voltage of only 1.42 V to reach 10 mA cm(−2) and good stability up to 20 h for water splitting in alkaline conditions, which is superior to commercialized Pt/C||RuO(2). This work demonstrates great potential in developing high‐performance 3D printed electrodes for electrochemical energy conversion and storage.
format Online
Article
Text
id pubmed-9762319
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-97623192022-12-20 A Bioinspired Hierarchical Fast Transport Network Boosting Electrochemical Performance of 3D Printed Electrodes Zhao, Bo Wu, Jiawen Liang, Zhiqiang Liang, Wenkai Yang, He Li, Dan Qin, Wei Peng, Meiwen Sun, Yinghui Jiang, Lin Adv Sci (Weinh) Research Articles Current 3D printed electrodes suffer from insufficient multiscale transport speed, which limits the improvement of electrochemical performance of 3D printed electrodes. Herein, a bioinspired hierarchical fast transport network (HFTN) in a 3D printed reduced graphene oxide/carbon nanotube (3DP GC) electrode demonstrating superior electrochemical performance is constructed. Theoretical calculations reveal that the HFTN of the 3DP GC electrode increases the ion transport rate by more than 50 times and 36 times compared with those of the bulk GC electrode and traditional 3DP GC (T‐3DP GC) electrode, respectively. Compared with carbon paper, carbon cloth, bulk GC electrode, and T‐3DP GC electrode, the HFTN in 3DP GC electrode endows obvious advantages: i) efficient utilization of surface area for uniform catalysts dispersion during electrochemical deposition; ii) efficient utilization of catalysts enables the high mass activity of catalysts and low overpotential of electrode in electrocatalytic reaction. The cell of 3DP GC/Ni‐NiO||3DP GC/NiS(2) demonstrates a low voltage of only 1.42 V to reach 10 mA cm(−2) and good stability up to 20 h for water splitting in alkaline conditions, which is superior to commercialized Pt/C||RuO(2). This work demonstrates great potential in developing high‐performance 3D printed electrodes for electrochemical energy conversion and storage. John Wiley and Sons Inc. 2022-10-26 /pmc/articles/PMC9762319/ /pubmed/36285676 http://dx.doi.org/10.1002/advs.202204751 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Zhao, Bo
Wu, Jiawen
Liang, Zhiqiang
Liang, Wenkai
Yang, He
Li, Dan
Qin, Wei
Peng, Meiwen
Sun, Yinghui
Jiang, Lin
A Bioinspired Hierarchical Fast Transport Network Boosting Electrochemical Performance of 3D Printed Electrodes
title A Bioinspired Hierarchical Fast Transport Network Boosting Electrochemical Performance of 3D Printed Electrodes
title_full A Bioinspired Hierarchical Fast Transport Network Boosting Electrochemical Performance of 3D Printed Electrodes
title_fullStr A Bioinspired Hierarchical Fast Transport Network Boosting Electrochemical Performance of 3D Printed Electrodes
title_full_unstemmed A Bioinspired Hierarchical Fast Transport Network Boosting Electrochemical Performance of 3D Printed Electrodes
title_short A Bioinspired Hierarchical Fast Transport Network Boosting Electrochemical Performance of 3D Printed Electrodes
title_sort bioinspired hierarchical fast transport network boosting electrochemical performance of 3d printed electrodes
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762319/
https://www.ncbi.nlm.nih.gov/pubmed/36285676
http://dx.doi.org/10.1002/advs.202204751
work_keys_str_mv AT zhaobo abioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT wujiawen abioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT liangzhiqiang abioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT liangwenkai abioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT yanghe abioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT lidan abioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT qinwei abioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT pengmeiwen abioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT sunyinghui abioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT jianglin abioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT zhaobo bioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT wujiawen bioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT liangzhiqiang bioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT liangwenkai bioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT yanghe bioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT lidan bioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT qinwei bioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT pengmeiwen bioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT sunyinghui bioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes
AT jianglin bioinspiredhierarchicalfasttransportnetworkboostingelectrochemicalperformanceof3dprintedelectrodes