Cargando…
Optimized Arterial Line Artifact Identification Algorithm Cleans High-Frequency Arterial Line Data With High Accuracy in Critically Ill Patients
High-frequency data streams of vital signs may be used to generate individualized hemodynamic targets for critically ill patients. Central to this precision medicine approach to resuscitation is our ability to screen these data streams for errors and artifacts. However, there is no consensus on the...
Autores principales: | Khan, Jasmine M., Maslove, David M., Boyd, J. Gordon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762921/ https://www.ncbi.nlm.nih.gov/pubmed/36567784 http://dx.doi.org/10.1097/CCE.0000000000000814 |
Ejemplares similares
-
A deep learning model for the classification of atrial fibrillation in critically ill patients
por: Chen, Brian, et al.
Publicado: (2023) -
The accuracy of blood pressure measured by arterial line and non-invasive cuff in critically ill children
por: Joffe, Rachel, et al.
Publicado: (2016) -
iCanClean Removes Motion, Muscle, Eye, and Line-Noise Artifacts from Phantom EEG
por: Downey, Ryan J., et al.
Publicado: (2023) -
Spontaneous peritonitis in critically ill cirrhotic patients: a diagnostic algorithm for clinicians and future perspectives
por: Fiore, Marco, et al.
Publicado: (2017) -
Generation and characterization of feline arterial and venous endothelial cell lines for the study of the vascular endothelium
por: Olyslaegers, Dominique AJ, et al.
Publicado: (2013)