Cargando…

Bayesian Adaptive Estimation with Theoretical Bound: An Exploration-Exploitation Approach

This paper investigates the theoretical bound to reduce the parameter uncertainty in Bayesian adaptive estimation for psychometric functions and proposes an exploration-exploitation (E-E) approach to improve the computation efficiency for parameter estimations. When the experimental trial goes on, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Mingyao, Zhu, Juanping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763008/
https://www.ncbi.nlm.nih.gov/pubmed/36544859
http://dx.doi.org/10.1155/2022/1143056
Descripción
Sumario:This paper investigates the theoretical bound to reduce the parameter uncertainty in Bayesian adaptive estimation for psychometric functions and proposes an exploration-exploitation (E-E) approach to improve the computation efficiency for parameter estimations. When the experimental trial goes on, the uncertainty of the parameters decreases dramatically and the space between the maximal mutual information and the theoretical bound gets narrower, so the advantage of classical Bayesian adaptive estimation algorithm diminishes. This approach tries to trade off the exploration (parameter posterior uncertainty) and the exploitation (parameter mean estimation). The experimental results show that the proposed E-E approach estimates parameters for psychometric functions with same convergence and reduces the computation time by more than 34.27%, compared with the classical Bayesian adaptive estimation.