Cargando…

Bayesian Adaptive Estimation with Theoretical Bound: An Exploration-Exploitation Approach

This paper investigates the theoretical bound to reduce the parameter uncertainty in Bayesian adaptive estimation for psychometric functions and proposes an exploration-exploitation (E-E) approach to improve the computation efficiency for parameter estimations. When the experimental trial goes on, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Mingyao, Zhu, Juanping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763008/
https://www.ncbi.nlm.nih.gov/pubmed/36544859
http://dx.doi.org/10.1155/2022/1143056
_version_ 1784852964580524032
author Li, Mingyao
Zhu, Juanping
author_facet Li, Mingyao
Zhu, Juanping
author_sort Li, Mingyao
collection PubMed
description This paper investigates the theoretical bound to reduce the parameter uncertainty in Bayesian adaptive estimation for psychometric functions and proposes an exploration-exploitation (E-E) approach to improve the computation efficiency for parameter estimations. When the experimental trial goes on, the uncertainty of the parameters decreases dramatically and the space between the maximal mutual information and the theoretical bound gets narrower, so the advantage of classical Bayesian adaptive estimation algorithm diminishes. This approach tries to trade off the exploration (parameter posterior uncertainty) and the exploitation (parameter mean estimation). The experimental results show that the proposed E-E approach estimates parameters for psychometric functions with same convergence and reduces the computation time by more than 34.27%, compared with the classical Bayesian adaptive estimation.
format Online
Article
Text
id pubmed-9763008
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-97630082022-12-20 Bayesian Adaptive Estimation with Theoretical Bound: An Exploration-Exploitation Approach Li, Mingyao Zhu, Juanping Comput Intell Neurosci Research Article This paper investigates the theoretical bound to reduce the parameter uncertainty in Bayesian adaptive estimation for psychometric functions and proposes an exploration-exploitation (E-E) approach to improve the computation efficiency for parameter estimations. When the experimental trial goes on, the uncertainty of the parameters decreases dramatically and the space between the maximal mutual information and the theoretical bound gets narrower, so the advantage of classical Bayesian adaptive estimation algorithm diminishes. This approach tries to trade off the exploration (parameter posterior uncertainty) and the exploitation (parameter mean estimation). The experimental results show that the proposed E-E approach estimates parameters for psychometric functions with same convergence and reduces the computation time by more than 34.27%, compared with the classical Bayesian adaptive estimation. Hindawi 2022-12-12 /pmc/articles/PMC9763008/ /pubmed/36544859 http://dx.doi.org/10.1155/2022/1143056 Text en Copyright © 2022 Mingyao Li and Juanping Zhu. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Mingyao
Zhu, Juanping
Bayesian Adaptive Estimation with Theoretical Bound: An Exploration-Exploitation Approach
title Bayesian Adaptive Estimation with Theoretical Bound: An Exploration-Exploitation Approach
title_full Bayesian Adaptive Estimation with Theoretical Bound: An Exploration-Exploitation Approach
title_fullStr Bayesian Adaptive Estimation with Theoretical Bound: An Exploration-Exploitation Approach
title_full_unstemmed Bayesian Adaptive Estimation with Theoretical Bound: An Exploration-Exploitation Approach
title_short Bayesian Adaptive Estimation with Theoretical Bound: An Exploration-Exploitation Approach
title_sort bayesian adaptive estimation with theoretical bound: an exploration-exploitation approach
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763008/
https://www.ncbi.nlm.nih.gov/pubmed/36544859
http://dx.doi.org/10.1155/2022/1143056
work_keys_str_mv AT limingyao bayesianadaptiveestimationwiththeoreticalboundanexplorationexploitationapproach
AT zhujuanping bayesianadaptiveestimationwiththeoreticalboundanexplorationexploitationapproach