Cargando…

Novel Cross-domain Symbiosis between Candidatus Patescibacteria and Hydrogenotrophic Methanogenic Archaea Methanospirillum Discovered in a Methanogenic Ecosystem

To identify novel cross-domain symbiosis between Candidatus Patescibacteria and Archaea, we performed fluorescence in situ hybridization (FISH) on enrichment cultures derived from methanogenic bioreactor sludge with the newly designed 32-520-1066 probe targeting the family-level uncultured clade 32-...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuroda, Kyohei, Kubota, Kengo, Kagemasa, Shuka, Nakai, Ryosuke, Hirakata, Yuga, Yamamoto, Kyosuke, Nobu, Masaru K., Narihiro, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763046/
https://www.ncbi.nlm.nih.gov/pubmed/36372432
http://dx.doi.org/10.1264/jsme2.ME22063
Descripción
Sumario:To identify novel cross-domain symbiosis between Candidatus Patescibacteria and Archaea, we performed fluorescence in situ hybridization (FISH) on enrichment cultures derived from methanogenic bioreactor sludge with the newly designed 32-520-1066 probe targeting the family-level uncultured clade 32-520/UBA5633 lineage in the class Ca. Paceibacteria. All FISH-detectable 32-520/UBA5633 cells were attached to Methanospirillum, indicating high host specificity. Transmission electron microscopy observations revealed 32-520/UBA5633-like cells that were specifically adherent to the plug structure of Methanospirillum-like rod-shaped cells. The metagenome-assembled genomes of 32-520/UBA5633 encoded unique gene clusters comprising pilin signal peptides and type IV pilins. These results provide novel insights into unseen symbiosis between Ca. Patescibacteria and Archaea.