Cargando…
High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that include important agricultural pests. To obtain insights into the ecological and evolutionary behaviors of microbes, including plant pathogens, in Psylloidea, high-resolution analyses of the microbiomes of nine psyl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763047/ https://www.ncbi.nlm.nih.gov/pubmed/36476840 http://dx.doi.org/10.1264/jsme2.ME22078 |
_version_ | 1784852972332646400 |
---|---|
author | Nakabachi, Atsushi Inoue, Hiromitsu Hirose, Yuu |
author_facet | Nakabachi, Atsushi Inoue, Hiromitsu Hirose, Yuu |
author_sort | Nakabachi, Atsushi |
collection | PubMed |
description | Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that include important agricultural pests. To obtain insights into the ecological and evolutionary behaviors of microbes, including plant pathogens, in Psylloidea, high-resolution analyses of the microbiomes of nine psyllid species belonging to the family Triozidae were performed using high-throughput amplicon sequencing of the 16S rRNA gene. Analyses identified various bacterial populations, showing that all nine psyllids have at least one secondary symbiont, along with the primary symbiont “Candidatus Carsonella ruddii” (Gammaproteobacteria: Oceanospirillales: Halomonadaceae). The majority of the secondary symbionts were gammaproteobacteria, particularly those of the order Enterobacterales, which included Arsenophonus and Serratia symbiotica, a bacterium formerly recognized only as a secondary symbiont of aphids (Hemiptera: Sternorrhyncha: Aphidoidea). The non-Enterobacterales gammaproteobacteria identified in the present study were Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae), a potential human pathogen, and Carnimonas (Oceanospirillales: Halomonadaceae), a lineage detected for the first time in Psylloidea. Regarding alphaproteobacteria, the potential plant pathogen “Ca. Liberibacter europaeus” (Rhizobiales: Rhizobiaceae) was detected for the first time in Epitrioza yasumatsui, which feeds on the Japanese silverberry Elaeagnus umbellata (Elaeagnaceae), an aggressive invasive plant in the United States and Europe. Besides the detection of Wolbachia (Rickettsiales: Anaplasmataceae) of supergroup B in three psyllid species, a lineage belonging to supergroup O was identified for the first time in Psylloidea. These results suggest the rampant transfer of bacterial symbionts among animals and plants, thereby providing deeper insights into the evolution of interkingdom interactions among multicellular organisms and bacteria, which will facilitate the control of pest psyllids. |
format | Online Article Text |
id | pubmed-9763047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles |
record_format | MEDLINE/PubMed |
spelling | pubmed-97630472023-01-03 High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O Nakabachi, Atsushi Inoue, Hiromitsu Hirose, Yuu Microbes Environ Regular Paper Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that include important agricultural pests. To obtain insights into the ecological and evolutionary behaviors of microbes, including plant pathogens, in Psylloidea, high-resolution analyses of the microbiomes of nine psyllid species belonging to the family Triozidae were performed using high-throughput amplicon sequencing of the 16S rRNA gene. Analyses identified various bacterial populations, showing that all nine psyllids have at least one secondary symbiont, along with the primary symbiont “Candidatus Carsonella ruddii” (Gammaproteobacteria: Oceanospirillales: Halomonadaceae). The majority of the secondary symbionts were gammaproteobacteria, particularly those of the order Enterobacterales, which included Arsenophonus and Serratia symbiotica, a bacterium formerly recognized only as a secondary symbiont of aphids (Hemiptera: Sternorrhyncha: Aphidoidea). The non-Enterobacterales gammaproteobacteria identified in the present study were Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae), a potential human pathogen, and Carnimonas (Oceanospirillales: Halomonadaceae), a lineage detected for the first time in Psylloidea. Regarding alphaproteobacteria, the potential plant pathogen “Ca. Liberibacter europaeus” (Rhizobiales: Rhizobiaceae) was detected for the first time in Epitrioza yasumatsui, which feeds on the Japanese silverberry Elaeagnus umbellata (Elaeagnaceae), an aggressive invasive plant in the United States and Europe. Besides the detection of Wolbachia (Rickettsiales: Anaplasmataceae) of supergroup B in three psyllid species, a lineage belonging to supergroup O was identified for the first time in Psylloidea. These results suggest the rampant transfer of bacterial symbionts among animals and plants, thereby providing deeper insights into the evolution of interkingdom interactions among multicellular organisms and bacteria, which will facilitate the control of pest psyllids. Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles 2022 2022-12-06 /pmc/articles/PMC9763047/ /pubmed/36476840 http://dx.doi.org/10.1264/jsme2.ME22078 Text en 2022 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Regular Paper Nakabachi, Atsushi Inoue, Hiromitsu Hirose, Yuu High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O |
title | High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O |
title_full | High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O |
title_fullStr | High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O |
title_full_unstemmed | High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O |
title_short | High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O |
title_sort | high-resolution microbiome analyses of nine psyllid species of the family triozidae identified previously unrecognized but major bacterial populations, including liberibacter and wolbachia of supergroup o |
topic | Regular Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763047/ https://www.ncbi.nlm.nih.gov/pubmed/36476840 http://dx.doi.org/10.1264/jsme2.ME22078 |
work_keys_str_mv | AT nakabachiatsushi highresolutionmicrobiomeanalysesofninepsyllidspeciesofthefamilytriozidaeidentifiedpreviouslyunrecognizedbutmajorbacterialpopulationsincludingliberibacterandwolbachiaofsupergroupo AT inouehiromitsu highresolutionmicrobiomeanalysesofninepsyllidspeciesofthefamilytriozidaeidentifiedpreviouslyunrecognizedbutmajorbacterialpopulationsincludingliberibacterandwolbachiaofsupergroupo AT hiroseyuu highresolutionmicrobiomeanalysesofninepsyllidspeciesofthefamilytriozidaeidentifiedpreviouslyunrecognizedbutmajorbacterialpopulationsincludingliberibacterandwolbachiaofsupergroupo |