Cargando…
Development and validation of a deep learning system to classify aetiology and predict anatomical outcomes of macular hole
AIMS: To develop a deep learning (DL) model for automatic classification of macular hole (MH) aetiology (idiopathic or secondary), and a multimodal deep fusion network (MDFN) model for reliable prediction of MH status (closed or open) at 1 month after vitrectomy and internal limiting membrane peelin...
Autores principales: | Xiao, Yu, Hu, Yijun, Quan, Wuxiu, Yang, Yahan, Lai, Weiyi, Wang, Xun, Zhang, Xiayin, Zhang, Bin, Wu, Yuqing, Wu, Qiaowei, Liu, Baoyi, Zeng, Xiaomin, Lin, Zhanjie, Fang, Ying, Hu, Yu, Feng, Songfu, Yuan, Ling, Cai, Hongmin, Li, Tao, Lin, Haotian, Yu, Honghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763201/ https://www.ncbi.nlm.nih.gov/pubmed/34348922 http://dx.doi.org/10.1136/bjophthalmol-2021-318844 |
Ejemplares similares
-
Machine learning-based prediction of anatomical outcome after idiopathic macular hole surgery
por: Xiao, Yu, et al.
Publicado: (2021) -
A multi-center study of prediction of macular hole status after vitrectomy and internal limiting membrane peeling by a deep learning model
por: Hu, Yijun, et al.
Publicado: (2021) -
Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning
por: Liu, Baoyi, et al.
Publicado: (2021) -
Factors Associated With the Presence of Foveal Bulge in Eyes With Resolved Diabetic Macular Edema
por: Wu, Qiaowei, et al.
Publicado: (2022) -
DETECTION OF MORPHOLOGIC PATTERNS OF DIABETIC MACULAR EDEMA USING A DEEP LEARNING APPROACH BASED ON OPTICAL COHERENCE TOMOGRAPHY IMAGES
por: Wu, Qiaowei, et al.
Publicado: (2021)