Cargando…

Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles

Acutely silencing specific neurons informs about their functional roles in circuits and behavior. Existing optogenetic silencers include ion pumps, channels, metabotropic receptors, and tools that damage the neurotransmitter release machinery. While the former hyperpolarize the cell, alter ionic gra...

Descripción completa

Detalles Bibliográficos
Autores principales: Vettkötter, Dennis, Schneider, Martin, Goulden, Brady D., Dill, Holger, Liewald, Jana, Zeiler, Sandra, Guldan, Julia, Ateş, Yilmaz Arda, Watanabe, Shigeki, Gottschalk, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763335/
https://www.ncbi.nlm.nih.gov/pubmed/36535932
http://dx.doi.org/10.1038/s41467-022-35324-z
_version_ 1784853035865866240
author Vettkötter, Dennis
Schneider, Martin
Goulden, Brady D.
Dill, Holger
Liewald, Jana
Zeiler, Sandra
Guldan, Julia
Ateş, Yilmaz Arda
Watanabe, Shigeki
Gottschalk, Alexander
author_facet Vettkötter, Dennis
Schneider, Martin
Goulden, Brady D.
Dill, Holger
Liewald, Jana
Zeiler, Sandra
Guldan, Julia
Ateş, Yilmaz Arda
Watanabe, Shigeki
Gottschalk, Alexander
author_sort Vettkötter, Dennis
collection PubMed
description Acutely silencing specific neurons informs about their functional roles in circuits and behavior. Existing optogenetic silencers include ion pumps, channels, metabotropic receptors, and tools that damage the neurotransmitter release machinery. While the former hyperpolarize the cell, alter ionic gradients or cellular biochemistry, the latter allow only slow recovery, requiring de novo synthesis. Thus, tools combining fast activation and reversibility are needed. Here, we use light-evoked homo-oligomerization of cryptochrome CRY2 to silence synaptic transmission, by clustering synaptic vesicles (SVs). We benchmark this tool, optoSynC, in Caenorhabditis elegans, zebrafish, and murine hippocampal neurons. optoSynC clusters SVs, observable by electron microscopy. Locomotion silencing occurs with tau(on) ~7.2 s and recovers with tau(off) ~6.5 min after light-off. optoSynC can inhibit exocytosis for several hours, at very low light intensities, does not affect ion currents, biochemistry or synaptic proteins, and may further allow manipulating different SV pools and the transfer of SVs between them.
format Online
Article
Text
id pubmed-9763335
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97633352022-12-21 Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles Vettkötter, Dennis Schneider, Martin Goulden, Brady D. Dill, Holger Liewald, Jana Zeiler, Sandra Guldan, Julia Ateş, Yilmaz Arda Watanabe, Shigeki Gottschalk, Alexander Nat Commun Article Acutely silencing specific neurons informs about their functional roles in circuits and behavior. Existing optogenetic silencers include ion pumps, channels, metabotropic receptors, and tools that damage the neurotransmitter release machinery. While the former hyperpolarize the cell, alter ionic gradients or cellular biochemistry, the latter allow only slow recovery, requiring de novo synthesis. Thus, tools combining fast activation and reversibility are needed. Here, we use light-evoked homo-oligomerization of cryptochrome CRY2 to silence synaptic transmission, by clustering synaptic vesicles (SVs). We benchmark this tool, optoSynC, in Caenorhabditis elegans, zebrafish, and murine hippocampal neurons. optoSynC clusters SVs, observable by electron microscopy. Locomotion silencing occurs with tau(on) ~7.2 s and recovers with tau(off) ~6.5 min after light-off. optoSynC can inhibit exocytosis for several hours, at very low light intensities, does not affect ion currents, biochemistry or synaptic proteins, and may further allow manipulating different SV pools and the transfer of SVs between them. Nature Publishing Group UK 2022-12-19 /pmc/articles/PMC9763335/ /pubmed/36535932 http://dx.doi.org/10.1038/s41467-022-35324-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Vettkötter, Dennis
Schneider, Martin
Goulden, Brady D.
Dill, Holger
Liewald, Jana
Zeiler, Sandra
Guldan, Julia
Ateş, Yilmaz Arda
Watanabe, Shigeki
Gottschalk, Alexander
Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles
title Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles
title_full Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles
title_fullStr Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles
title_full_unstemmed Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles
title_short Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles
title_sort rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763335/
https://www.ncbi.nlm.nih.gov/pubmed/36535932
http://dx.doi.org/10.1038/s41467-022-35324-z
work_keys_str_mv AT vettkotterdennis rapidandreversibleoptogeneticsilencingofsynaptictransmissionbyclusteringofsynapticvesicles
AT schneidermartin rapidandreversibleoptogeneticsilencingofsynaptictransmissionbyclusteringofsynapticvesicles
AT gouldenbradyd rapidandreversibleoptogeneticsilencingofsynaptictransmissionbyclusteringofsynapticvesicles
AT dillholger rapidandreversibleoptogeneticsilencingofsynaptictransmissionbyclusteringofsynapticvesicles
AT liewaldjana rapidandreversibleoptogeneticsilencingofsynaptictransmissionbyclusteringofsynapticvesicles
AT zeilersandra rapidandreversibleoptogeneticsilencingofsynaptictransmissionbyclusteringofsynapticvesicles
AT guldanjulia rapidandreversibleoptogeneticsilencingofsynaptictransmissionbyclusteringofsynapticvesicles
AT atesyilmazarda rapidandreversibleoptogeneticsilencingofsynaptictransmissionbyclusteringofsynapticvesicles
AT watanabeshigeki rapidandreversibleoptogeneticsilencingofsynaptictransmissionbyclusteringofsynapticvesicles
AT gottschalkalexander rapidandreversibleoptogeneticsilencingofsynaptictransmissionbyclusteringofsynapticvesicles