Cargando…

Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents

Although cardiovascular disease (CVD) is the leading cause of death worldwide, over 80% of it is preventable through early intervention and lifestyle changes. Most cases of CVD are detected in adulthood, but the risk factors leading to CVD begin at a younger age. This research is the first to develo...

Descripción completa

Detalles Bibliográficos
Autores principales: Salah, Haya, Srinivas, Sharan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763353/
https://www.ncbi.nlm.nih.gov/pubmed/36536006
http://dx.doi.org/10.1038/s41598-022-25933-5
_version_ 1784853040143007744
author Salah, Haya
Srinivas, Sharan
author_facet Salah, Haya
Srinivas, Sharan
author_sort Salah, Haya
collection PubMed
description Although cardiovascular disease (CVD) is the leading cause of death worldwide, over 80% of it is preventable through early intervention and lifestyle changes. Most cases of CVD are detected in adulthood, but the risk factors leading to CVD begin at a younger age. This research is the first to develop an explainable machine learning (ML)-based framework for long-term CVD risk prediction (low vs. high) among adolescents. This study uses longitudinal data from a nationally representative sample of individuals who participated in the Add Health study. A total of 14,083 participants who completed relevant survey questionnaires and health tests from adolescence to young adulthood were chosen. Four ML classifiers [decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), and deep neural networks (DNN)] and 36 adolescent predictors are used to predict adulthood CVD risk. While all ML models demonstrated good prediction capability, XGBoost achieved the best performance (AUC-ROC: 84.5% and AUC-PR: 96.9% on testing data). Besides, critical predictors of long-term CVD risk and its impact on risk prediction are obtained using an explainable technique for interpreting ML predictions. The results suggest that ML can be employed to detect adulthood CVD very early in life, and such an approach may facilitate primordial prevention and personalized intervention.
format Online
Article
Text
id pubmed-9763353
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97633532022-12-21 Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents Salah, Haya Srinivas, Sharan Sci Rep Article Although cardiovascular disease (CVD) is the leading cause of death worldwide, over 80% of it is preventable through early intervention and lifestyle changes. Most cases of CVD are detected in adulthood, but the risk factors leading to CVD begin at a younger age. This research is the first to develop an explainable machine learning (ML)-based framework for long-term CVD risk prediction (low vs. high) among adolescents. This study uses longitudinal data from a nationally representative sample of individuals who participated in the Add Health study. A total of 14,083 participants who completed relevant survey questionnaires and health tests from adolescence to young adulthood were chosen. Four ML classifiers [decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), and deep neural networks (DNN)] and 36 adolescent predictors are used to predict adulthood CVD risk. While all ML models demonstrated good prediction capability, XGBoost achieved the best performance (AUC-ROC: 84.5% and AUC-PR: 96.9% on testing data). Besides, critical predictors of long-term CVD risk and its impact on risk prediction are obtained using an explainable technique for interpreting ML predictions. The results suggest that ML can be employed to detect adulthood CVD very early in life, and such an approach may facilitate primordial prevention and personalized intervention. Nature Publishing Group UK 2022-12-19 /pmc/articles/PMC9763353/ /pubmed/36536006 http://dx.doi.org/10.1038/s41598-022-25933-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Salah, Haya
Srinivas, Sharan
Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents
title Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents
title_full Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents
title_fullStr Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents
title_full_unstemmed Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents
title_short Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents
title_sort explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763353/
https://www.ncbi.nlm.nih.gov/pubmed/36536006
http://dx.doi.org/10.1038/s41598-022-25933-5
work_keys_str_mv AT salahhaya explainablemachinelearningframeworkforpredictinglongtermcardiovasculardiseaseriskamongadolescents
AT srinivassharan explainablemachinelearningframeworkforpredictinglongtermcardiovasculardiseaseriskamongadolescents