Cargando…
Explainable machine learning framework for predicting long-term cardiovascular disease risk among adolescents
Although cardiovascular disease (CVD) is the leading cause of death worldwide, over 80% of it is preventable through early intervention and lifestyle changes. Most cases of CVD are detected in adulthood, but the risk factors leading to CVD begin at a younger age. This research is the first to develo...
Autores principales: | Salah, Haya, Srinivas, Sharan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763353/ https://www.ncbi.nlm.nih.gov/pubmed/36536006 http://dx.doi.org/10.1038/s41598-022-25933-5 |
Ejemplares similares
-
Explainable machine learning framework to predict personalized physiological aging
por: Bernard, David, et al.
Publicado: (2023) -
An explainable machine learning framework for lung cancer hospital length of stay prediction
por: Alsinglawi, Belal, et al.
Publicado: (2022) -
Predicting and Mitigating Freshmen Student Attrition: A Local-Explainable Machine Learning Framework
por: Delen, Dursun, et al.
Publicado: (2023) -
A Machine Learning-Based Approach for Predicting Patient Punctuality in Ambulatory Care Centers
por: Srinivas, Sharan
Publicado: (2020) -
Machine learning for predicting readmission risk among the frail: Explainable AI for healthcare
por: Mohanty, Somya D., et al.
Publicado: (2021)