Cargando…
Complete blood count and C-reactive protein to predict positive blood culture among neonates using machine learning algorithms
PURPOSE: The authors aimed to develop a Machine-Learning (ML) algorithm that can predict positive blood culture in the neonatal intensive care unit, using complete blood count and C-reactive protein values. METHODS: The study was based on patients’ electronic health records at a tertiary neonatal in...
Autores principales: | Matsushita, Felipe Yu, Krebs, Vera Lúcia Jornada, de Carvalho, Werther Brunow |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763374/ https://www.ncbi.nlm.nih.gov/pubmed/36502550 http://dx.doi.org/10.1016/j.clinsp.2022.100148 |
Ejemplares similares
-
Artificial intelligence and machine learning in pediatrics and
neonatology healthcare
por: Matsushita, Felipe Yu, et al.
Publicado: (2022) -
Association between Serum Lactate and Morbidity and Mortality in Neonates: A Systematic Review and Meta-Analysis
por: Matsushita, Felipe Yu, et al.
Publicado: (2023) -
Risk factors of acute kidney injury in very low birth weight infants in a tertiary neonatal intensive care unit
por: Moraes, Lucas Hirano Arruda, et al.
Publicado: (2022) -
Neonatal SARS-CoV-2 infection
por: de Carvalho, Werther Brunow, et al.
Publicado: (2020) -
Orofacial characteristics of the very low-birth-weight preterm infants()
por: Ruiz, Dóris Rocha, et al.
Publicado: (2020)