Cargando…
Power spectrum and critical exponents in the 2D stochastic Wilson–Cowan model
The power spectrum of brain activity is composed by peaks at characteristic frequencies superimposed to a background that decays as a power law of the frequency, [Formula: see text] , with an exponent [Formula: see text] close to 1 (pink noise). This exponent is predicted to be connected with the ex...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763404/ https://www.ncbi.nlm.nih.gov/pubmed/36536058 http://dx.doi.org/10.1038/s41598-022-26392-8 |
Sumario: | The power spectrum of brain activity is composed by peaks at characteristic frequencies superimposed to a background that decays as a power law of the frequency, [Formula: see text] , with an exponent [Formula: see text] close to 1 (pink noise). This exponent is predicted to be connected with the exponent [Formula: see text] related to the scaling of the average size with the duration of avalanches of activity. “Mean field” models of neural dynamics predict exponents [Formula: see text] and [Formula: see text] equal or near 2 at criticality (brown noise), including the simple branching model and the fully-connected stochastic Wilson–Cowan model. We here show that a 2D version of the stochastic Wilson–Cowan model, where neuron connections decay exponentially with the distance, is characterized by exponents [Formula: see text] and [Formula: see text] markedly different from those of mean field, respectively around 1 and 1.3. The exponents [Formula: see text] and [Formula: see text] of avalanche size and duration distributions, equal to 1.5 and 2 in mean field, decrease respectively to [Formula: see text] and [Formula: see text] . This seems to suggest the possibility of a different universality class for the model in finite dimension. |
---|