Cargando…
An epitaxial graphene platform for zero-energy edge state nanoelectronics
Graphene’s original promise to succeed silicon faltered due to pervasive edge disorder in lithographically patterned deposited graphene and the lack of a new electronics paradigm. Here we demonstrate that the annealed edges in conventionally patterned graphene epitaxially grown on a silicon carbide...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763431/ https://www.ncbi.nlm.nih.gov/pubmed/36535919 http://dx.doi.org/10.1038/s41467-022-34369-4 |
_version_ | 1784853058255060992 |
---|---|
author | Prudkovskiy, Vladimir S. Hu, Yiran Zhang, Kaimin Hu, Yue Ji, Peixuan Nunn, Grant Zhao, Jian Shi, Chenqian Tejeda, Antonio Wander, David De Cecco, Alessandro Winkelmann, Clemens B. Jiang, Yuxuan Zhao, Tianhao Wakabayashi, Katsunori Jiang, Zhigang Ma, Lei Berger, Claire de Heer, Walt A. |
author_facet | Prudkovskiy, Vladimir S. Hu, Yiran Zhang, Kaimin Hu, Yue Ji, Peixuan Nunn, Grant Zhao, Jian Shi, Chenqian Tejeda, Antonio Wander, David De Cecco, Alessandro Winkelmann, Clemens B. Jiang, Yuxuan Zhao, Tianhao Wakabayashi, Katsunori Jiang, Zhigang Ma, Lei Berger, Claire de Heer, Walt A. |
author_sort | Prudkovskiy, Vladimir S. |
collection | PubMed |
description | Graphene’s original promise to succeed silicon faltered due to pervasive edge disorder in lithographically patterned deposited graphene and the lack of a new electronics paradigm. Here we demonstrate that the annealed edges in conventionally patterned graphene epitaxially grown on a silicon carbide substrate (epigraphene) are stabilized by the substrate and support a protected edge state. The edge state has a mean free path that is greater than 50 microns, 5000 times greater than the bulk states and involves a theoretically unexpected Majorana-like zero-energy non-degenerate quasiparticle that does not produce a Hall voltage. In seamless integrated structures, the edge state forms a zero-energy one-dimensional ballistic network with essentially dissipationless nodes at ribbon–ribbon junctions. Seamless device structures offer a variety of switching possibilities including quantum coherent devices at low temperatures. This makes epigraphene a technologically viable graphene nanoelectronics platform that has the potential to succeed silicon nanoelectronics. |
format | Online Article Text |
id | pubmed-9763431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-97634312022-12-21 An epitaxial graphene platform for zero-energy edge state nanoelectronics Prudkovskiy, Vladimir S. Hu, Yiran Zhang, Kaimin Hu, Yue Ji, Peixuan Nunn, Grant Zhao, Jian Shi, Chenqian Tejeda, Antonio Wander, David De Cecco, Alessandro Winkelmann, Clemens B. Jiang, Yuxuan Zhao, Tianhao Wakabayashi, Katsunori Jiang, Zhigang Ma, Lei Berger, Claire de Heer, Walt A. Nat Commun Article Graphene’s original promise to succeed silicon faltered due to pervasive edge disorder in lithographically patterned deposited graphene and the lack of a new electronics paradigm. Here we demonstrate that the annealed edges in conventionally patterned graphene epitaxially grown on a silicon carbide substrate (epigraphene) are stabilized by the substrate and support a protected edge state. The edge state has a mean free path that is greater than 50 microns, 5000 times greater than the bulk states and involves a theoretically unexpected Majorana-like zero-energy non-degenerate quasiparticle that does not produce a Hall voltage. In seamless integrated structures, the edge state forms a zero-energy one-dimensional ballistic network with essentially dissipationless nodes at ribbon–ribbon junctions. Seamless device structures offer a variety of switching possibilities including quantum coherent devices at low temperatures. This makes epigraphene a technologically viable graphene nanoelectronics platform that has the potential to succeed silicon nanoelectronics. Nature Publishing Group UK 2022-12-19 /pmc/articles/PMC9763431/ /pubmed/36535919 http://dx.doi.org/10.1038/s41467-022-34369-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Prudkovskiy, Vladimir S. Hu, Yiran Zhang, Kaimin Hu, Yue Ji, Peixuan Nunn, Grant Zhao, Jian Shi, Chenqian Tejeda, Antonio Wander, David De Cecco, Alessandro Winkelmann, Clemens B. Jiang, Yuxuan Zhao, Tianhao Wakabayashi, Katsunori Jiang, Zhigang Ma, Lei Berger, Claire de Heer, Walt A. An epitaxial graphene platform for zero-energy edge state nanoelectronics |
title | An epitaxial graphene platform for zero-energy edge state nanoelectronics |
title_full | An epitaxial graphene platform for zero-energy edge state nanoelectronics |
title_fullStr | An epitaxial graphene platform for zero-energy edge state nanoelectronics |
title_full_unstemmed | An epitaxial graphene platform for zero-energy edge state nanoelectronics |
title_short | An epitaxial graphene platform for zero-energy edge state nanoelectronics |
title_sort | epitaxial graphene platform for zero-energy edge state nanoelectronics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763431/ https://www.ncbi.nlm.nih.gov/pubmed/36535919 http://dx.doi.org/10.1038/s41467-022-34369-4 |
work_keys_str_mv | AT prudkovskiyvladimirs anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT huyiran anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT zhangkaimin anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT huyue anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT jipeixuan anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT nunngrant anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT zhaojian anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT shichenqian anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT tejedaantonio anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT wanderdavid anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT dececcoalessandro anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT winkelmannclemensb anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT jiangyuxuan anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT zhaotianhao anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT wakabayashikatsunori anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT jiangzhigang anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT malei anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT bergerclaire anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT deheerwalta anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT prudkovskiyvladimirs epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT huyiran epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT zhangkaimin epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT huyue epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT jipeixuan epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT nunngrant epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT zhaojian epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT shichenqian epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT tejedaantonio epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT wanderdavid epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT dececcoalessandro epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT winkelmannclemensb epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT jiangyuxuan epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT zhaotianhao epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT wakabayashikatsunori epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT jiangzhigang epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT malei epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT bergerclaire epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics AT deheerwalta epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics |