Cargando…

An epitaxial graphene platform for zero-energy edge state nanoelectronics

Graphene’s original promise to succeed silicon faltered due to pervasive edge disorder in lithographically patterned deposited graphene and the lack of a new electronics paradigm. Here we demonstrate that the annealed edges in conventionally patterned graphene epitaxially grown on a silicon carbide...

Descripción completa

Detalles Bibliográficos
Autores principales: Prudkovskiy, Vladimir S., Hu, Yiran, Zhang, Kaimin, Hu, Yue, Ji, Peixuan, Nunn, Grant, Zhao, Jian, Shi, Chenqian, Tejeda, Antonio, Wander, David, De Cecco, Alessandro, Winkelmann, Clemens B., Jiang, Yuxuan, Zhao, Tianhao, Wakabayashi, Katsunori, Jiang, Zhigang, Ma, Lei, Berger, Claire, de Heer, Walt A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763431/
https://www.ncbi.nlm.nih.gov/pubmed/36535919
http://dx.doi.org/10.1038/s41467-022-34369-4
_version_ 1784853058255060992
author Prudkovskiy, Vladimir S.
Hu, Yiran
Zhang, Kaimin
Hu, Yue
Ji, Peixuan
Nunn, Grant
Zhao, Jian
Shi, Chenqian
Tejeda, Antonio
Wander, David
De Cecco, Alessandro
Winkelmann, Clemens B.
Jiang, Yuxuan
Zhao, Tianhao
Wakabayashi, Katsunori
Jiang, Zhigang
Ma, Lei
Berger, Claire
de Heer, Walt A.
author_facet Prudkovskiy, Vladimir S.
Hu, Yiran
Zhang, Kaimin
Hu, Yue
Ji, Peixuan
Nunn, Grant
Zhao, Jian
Shi, Chenqian
Tejeda, Antonio
Wander, David
De Cecco, Alessandro
Winkelmann, Clemens B.
Jiang, Yuxuan
Zhao, Tianhao
Wakabayashi, Katsunori
Jiang, Zhigang
Ma, Lei
Berger, Claire
de Heer, Walt A.
author_sort Prudkovskiy, Vladimir S.
collection PubMed
description Graphene’s original promise to succeed silicon faltered due to pervasive edge disorder in lithographically patterned deposited graphene and the lack of a new electronics paradigm. Here we demonstrate that the annealed edges in conventionally patterned graphene epitaxially grown on a silicon carbide substrate (epigraphene) are stabilized by the substrate and support a protected edge state. The edge state has a mean free path that is greater than 50 microns, 5000 times greater than the bulk states and involves a theoretically unexpected Majorana-like zero-energy non-degenerate quasiparticle that does not produce a Hall voltage. In seamless integrated structures, the edge state forms a zero-energy one-dimensional ballistic network with essentially dissipationless nodes at ribbon–ribbon junctions. Seamless device structures offer a variety of switching possibilities including quantum coherent devices at low temperatures. This makes epigraphene a technologically viable graphene nanoelectronics platform that has the potential to succeed silicon nanoelectronics.
format Online
Article
Text
id pubmed-9763431
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97634312022-12-21 An epitaxial graphene platform for zero-energy edge state nanoelectronics Prudkovskiy, Vladimir S. Hu, Yiran Zhang, Kaimin Hu, Yue Ji, Peixuan Nunn, Grant Zhao, Jian Shi, Chenqian Tejeda, Antonio Wander, David De Cecco, Alessandro Winkelmann, Clemens B. Jiang, Yuxuan Zhao, Tianhao Wakabayashi, Katsunori Jiang, Zhigang Ma, Lei Berger, Claire de Heer, Walt A. Nat Commun Article Graphene’s original promise to succeed silicon faltered due to pervasive edge disorder in lithographically patterned deposited graphene and the lack of a new electronics paradigm. Here we demonstrate that the annealed edges in conventionally patterned graphene epitaxially grown on a silicon carbide substrate (epigraphene) are stabilized by the substrate and support a protected edge state. The edge state has a mean free path that is greater than 50 microns, 5000 times greater than the bulk states and involves a theoretically unexpected Majorana-like zero-energy non-degenerate quasiparticle that does not produce a Hall voltage. In seamless integrated structures, the edge state forms a zero-energy one-dimensional ballistic network with essentially dissipationless nodes at ribbon–ribbon junctions. Seamless device structures offer a variety of switching possibilities including quantum coherent devices at low temperatures. This makes epigraphene a technologically viable graphene nanoelectronics platform that has the potential to succeed silicon nanoelectronics. Nature Publishing Group UK 2022-12-19 /pmc/articles/PMC9763431/ /pubmed/36535919 http://dx.doi.org/10.1038/s41467-022-34369-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Prudkovskiy, Vladimir S.
Hu, Yiran
Zhang, Kaimin
Hu, Yue
Ji, Peixuan
Nunn, Grant
Zhao, Jian
Shi, Chenqian
Tejeda, Antonio
Wander, David
De Cecco, Alessandro
Winkelmann, Clemens B.
Jiang, Yuxuan
Zhao, Tianhao
Wakabayashi, Katsunori
Jiang, Zhigang
Ma, Lei
Berger, Claire
de Heer, Walt A.
An epitaxial graphene platform for zero-energy edge state nanoelectronics
title An epitaxial graphene platform for zero-energy edge state nanoelectronics
title_full An epitaxial graphene platform for zero-energy edge state nanoelectronics
title_fullStr An epitaxial graphene platform for zero-energy edge state nanoelectronics
title_full_unstemmed An epitaxial graphene platform for zero-energy edge state nanoelectronics
title_short An epitaxial graphene platform for zero-energy edge state nanoelectronics
title_sort epitaxial graphene platform for zero-energy edge state nanoelectronics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763431/
https://www.ncbi.nlm.nih.gov/pubmed/36535919
http://dx.doi.org/10.1038/s41467-022-34369-4
work_keys_str_mv AT prudkovskiyvladimirs anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT huyiran anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT zhangkaimin anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT huyue anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT jipeixuan anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT nunngrant anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT zhaojian anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT shichenqian anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT tejedaantonio anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT wanderdavid anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT dececcoalessandro anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT winkelmannclemensb anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT jiangyuxuan anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT zhaotianhao anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT wakabayashikatsunori anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT jiangzhigang anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT malei anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT bergerclaire anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT deheerwalta anepitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT prudkovskiyvladimirs epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT huyiran epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT zhangkaimin epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT huyue epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT jipeixuan epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT nunngrant epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT zhaojian epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT shichenqian epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT tejedaantonio epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT wanderdavid epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT dececcoalessandro epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT winkelmannclemensb epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT jiangyuxuan epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT zhaotianhao epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT wakabayashikatsunori epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT jiangzhigang epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT malei epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT bergerclaire epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics
AT deheerwalta epitaxialgrapheneplatformforzeroenergyedgestatenanoelectronics