Cargando…
DeepCausality: A general AI-powered causal inference framework for free text: A case study of LiverTox
Causality plays an essential role in multiple scientific disciplines, including the social, behavioral, and biological sciences and portions of statistics and artificial intelligence. Manual-based causality assessment from a large number of free text-based documents is very time-consuming, labor-int...
Autores principales: | Wang, Xingqiao, Xu, Xiaowei, Tong, Weida, Liu, Qi, Liu, Zhichao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763446/ https://www.ncbi.nlm.nih.gov/pubmed/36561659 http://dx.doi.org/10.3389/frai.2022.999289 |
Ejemplares similares
-
InferBERT: A Transformer-Based Causal Inference Framework for Enhancing Pharmacovigilance
por: Wang, Xingqiao, et al.
Publicado: (2021) -
Temporal network embedding framework with causal anonymous walks representations
por: Makarov, Ilya, et al.
Publicado: (2022) -
Adaptability of AI for safety evaluation in regulatory science: A case study of drug-induced liver injury
por: Connor, Skylar, et al.
Publicado: (2022) -
Causal graph extraction from news: a comparative study of time-series causality learning techniques
por: Maisonnave, Mariano, et al.
Publicado: (2022) -
DICE: A Drug Indication Classification and Encyclopedia for AI-Based Indication Extraction
por: Bhatt, Arjun, et al.
Publicado: (2021)