Cargando…

A study of the influence of current ramp rate on the performance of polymer electrolyte membrane fuel cell

Durability and reliability are the key factors that prevent fuel cells from successful implementation in automotive sector. Dynamic load change is a common and frequent condition that the fuel cell has to undergo in automotive applications. Fuel cells are more sensitive to changes in load conditions...

Descripción completa

Detalles Bibliográficos
Autores principales: Chandran, Mathan, Palaniswamy, Karthikeyan, Karthik Babu, N. B., Das, Oisik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763490/
https://www.ncbi.nlm.nih.gov/pubmed/36535964
http://dx.doi.org/10.1038/s41598-022-25037-0
Descripción
Sumario:Durability and reliability are the key factors that prevent fuel cells from successful implementation in automotive sector. Dynamic load change is a common and frequent condition that the fuel cell has to undergo in automotive applications. Fuel cells are more sensitive to changes in load conditions and degrade based on load variation representing idling, rated power, and high power operating conditions. To examine the influence of dynamic load step on the fuel cell performance, two similar cells of active 25 cm(2) was tested under two different load step for the same dynamic load cycle. The main difference in dynamic load cycle 2 was the ramp rate which was fixed as 0.1, 0.3, and 0.25 A/cm(2)/s for 0.2, 0.6, and 1.0 A/cm(2) respectively. To investigate the degradative effects, polarization curves, electrochemical impedance spectroscopy, and field emission scanning electron microscopy were used. The results indicated that the degradation rate increased in both dynamic load cycles but however the impact of load change was comparatively minimal in dynamic load cycle 2. The total degradation in performance was 20.67% and 10.72% in dynamic load cycles 1 and 2 respectively. Fuel cell performance degraded in a manner that was consistent with the electrochemical impedance spectroscopy and cross-sectional analysis of field emission scanning electron microscopy. The results prove that the degradation rate is dependent on the load step and the number of load cycles. Severe catalyst degradation and delamination were observed in fuel cells operated under dynamic load cycle 1.