Cargando…
Substrate concentration: A more serious consideration than the amount of 5-hydroxymethylfurfural in acid-catalyzed hydrolysis during bioethanol production from starch biomass
5-hydroxymethylfurfural (5-HMF) yield during bioethanol production from starch was determined using spectrophotometry and chromatography. Increasing acid concentration and time favored 5-HMF production with HCl while yield decreased after 45-minute hydrolysis time for HNO(3) and H(2)SO(4) hydrolyzed...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763765/ https://www.ncbi.nlm.nih.gov/pubmed/36561686 http://dx.doi.org/10.1016/j.heliyon.2022.e12047 |
Sumario: | 5-hydroxymethylfurfural (5-HMF) yield during bioethanol production from starch was determined using spectrophotometry and chromatography. Increasing acid concentration and time favored 5-HMF production with HCl while yield decreased after 45-minute hydrolysis time for HNO(3) and H(2)SO(4) hydrolyzed samples. Impacts of glucose (substrate) concentration and produced 5-HMF on bioethanol yield were studied with different sulphuric acid concentrations and different α-amylase and amyloglucosidase activities. A central composite rotational design was utilized to determine the conditions of hydrolysis for optimum glucose production. The results showed that maximum glucose yield occurred at 0.5 M acid concentration and 45-minute hydrolysis time, while maximum yield was achieved at 120 and 280 units of α-amylase and amyloglucosidase activities respectively. It was shown that 5-HMF did not exhibit much inhibition on ethanol yield at low acid concentrations but became pronounced at higher acid concentrations, while high glucose concentrations had a pronounced negative effect on ethanol yield and fermentation efficiency. |
---|