Cargando…
Forecasting petroleum products consumption in Cameroon's household sector using a sequential GMC(1,n) model optimized by genetic algorithms
Forecasting energy consumption is a major concern for policymakers, oil industry companies, and many other associated businesses. Though there exist many forecasting methodologies, selecting the most appropriate one is critical. GM(1,1) has proven to be one of the most successful forecasting tool. G...
Autores principales: | Sapnken, Flavian Emmanuel, Ahmat, Khazali Acyl, Boukar, Michel, Biobiongono Nyobe, Serge Luc, Tamba, Jean Gaston |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763868/ https://www.ncbi.nlm.nih.gov/pubmed/36561699 http://dx.doi.org/10.1016/j.heliyon.2022.e12138 |
Ejemplares similares
-
A technique for improving petroleum products forecasts using grey convolution models and genetic algorithms
por: Sapnken, Flavian Emmanuel, et al.
Publicado: (2023) -
Analysis of household LPG demand elasticity in Cameroon and policy implications
por: Sapnken, Flavian Emmanuel, et al.
Publicado: (2023) -
Forecasting methodology with structural auto-adaptive intelligent grey models
por: Sapnken, Flavian Emmanuel, et al.
Publicado: (2023) -
Forecasting CO(2) emissions from road fuel combustion using grey prediction models: A novel approach
por: Sapnken, Flavian Emmanuel, et al.
Publicado: (2023) -
Methodology for examining the relationship between oil rent and crude oil production: Evidence from Cameroon
por: Ewodo-Amougou, Marcel Rodrigue, et al.
Publicado: (2023)