Cargando…

Tribo-charge enhanced hybrid air filter masks for efficient particulate matter capture with greatly extended service life

Face masks have been an effective and indispensable personal protective measure against particulate matter pollutants and respiratory diseases, especially the novel Coronavirus disease recently. However, disposable surgical face masks suffer from low filtration efficiency for particles ranging from...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lingyun, Bian, Ye, Lim, Chee Kent, Niu, Zhuolun, Lee, Patrick K.H., Chen, Chun, Zhang, Li, Daoud, Walid A., Zi, Yunlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764213/
https://www.ncbi.nlm.nih.gov/pubmed/36571102
http://dx.doi.org/10.1016/j.nanoen.2021.106015
Descripción
Sumario:Face masks have been an effective and indispensable personal protective measure against particulate matter pollutants and respiratory diseases, especially the novel Coronavirus disease recently. However, disposable surgical face masks suffer from low filtration efficiency for particles ranging from nano- to micro-size, and the limited service life of ~ 4 h. Here, a nano/micro fibrous hybrid air filter mask composing of electrospun nanofibrous network and poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) coated polypropylene (PP) is proposed. Furthermore, the resultant filter is supplied with tribo-charges by a freestanding sliding triboelectric nanogenerator. Through the enhanced synergistic effect of mechanical interception and electrostatic forces, the hybrid air filter demonstrates high filtration efficiency for particle size of 11.5 nm to 2.5 µm, with a 9.3–34.68% enhancement for particles of 0.3–2.5 µm compared to pristine PP, and 48-h stable filtration efficiency of 94% (0.3–0.4 µm) and 99% (1–2.5 µm) with a low pressure drop of ~110 Pa. In addition, sterilization ability of the tribo-charge enhanced air filter is demonstrated. This work provides a facile and cost-effective approach for state-of-the-art face masks toward high filtration performance of nano- to micro- particles with greatly extended service life.