Cargando…
Direct Gene Expression Profile Prediction for Uveal Melanoma from Digital Cytopathology Images via Deep Learning and Salient Image Region Identification
OBJECTIVE: To demonstrate that deep learning (DL) methods can produce robust prediction of gene expression profile (GEP) in uveal melanoma (UM) based on digital cytopathology images. DESIGN: Evaluation of a diagnostic test or technology. SUBJECTS, PARTICIPANTS, AND CONTROLS: Deidentified smeared cyt...
Autores principales: | Liu, T. Y. Alvin, Chen, Haomin, Gomez, Catalina, Correa, Zelia M., Unberath, Mathias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764247/ https://www.ncbi.nlm.nih.gov/pubmed/36561353 http://dx.doi.org/10.1016/j.xops.2022.100240 |
Ejemplares similares
-
Digital Imaging in Cytopathology
por: Khalbuss, Walid E., et al.
Publicado: (2011) -
Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review
por: Chen, Haomin, et al.
Publicado: (2022) -
Clinical application of genetic testing for posterior uveal melanoma
por: Schopper, Victoria J., et al.
Publicado: (2016) -
The impact of digital imaging in the field of cytopathology
por: Pantanowitz, Liron, et al.
Publicado: (2009) -
Posterior uveal melanoma in adolescents and children: current perspectives
por: Fry, Matthew V, et al.
Publicado: (2018)