Cargando…

Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip

Three-dimensional (3D) blood vessels-on-a-chip (VoC) models integrate the biological complexity of vessel walls with dynamic microenvironmental cues, such as wall shear stress (WSS) and circumferential strain (CS). However, these parameters are difficult to control and are often poorly reproducible...

Descripción completa

Detalles Bibliográficos
Autores principales: de Graaf, Mees N. S., Vivas, Aisen, Kasi, Dhanesh G., van den Hil, Francijna E., van den Berg, Albert, van der Meer, Andries D., Mummery, Christine L., Orlova, Valeria V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764810/
https://www.ncbi.nlm.nih.gov/pubmed/36484766
http://dx.doi.org/10.1039/d2lc00686c
_version_ 1784853351458930688
author de Graaf, Mees N. S.
Vivas, Aisen
Kasi, Dhanesh G.
van den Hil, Francijna E.
van den Berg, Albert
van der Meer, Andries D.
Mummery, Christine L.
Orlova, Valeria V.
author_facet de Graaf, Mees N. S.
Vivas, Aisen
Kasi, Dhanesh G.
van den Hil, Francijna E.
van den Berg, Albert
van der Meer, Andries D.
Mummery, Christine L.
Orlova, Valeria V.
author_sort de Graaf, Mees N. S.
collection PubMed
description Three-dimensional (3D) blood vessels-on-a-chip (VoC) models integrate the biological complexity of vessel walls with dynamic microenvironmental cues, such as wall shear stress (WSS) and circumferential strain (CS). However, these parameters are difficult to control and are often poorly reproducible due to the high intrinsic diameter variation of individual 3D-VoCs. As a result, the throughput of current 3D systems is one-channel-at-a-time. Here, we developed a fluidic circuit board (FCB) for simultaneous perfusion of up to twelve 3D-VoCs using a single set of control parameters. By designing the internal hydraulic resistances in the FCB appropriately, it was possible to provide a pre-set WSS to all connected 3D-VoCs, despite significant variation in lumen diameters. Using this FCB, we found that variation of CS or WSS induce morphological changes to human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) and conclude that control of these parameters using a FCB is necessary to study 3D-VOCs.
format Online
Article
Text
id pubmed-9764810
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-97648102023-01-04 Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip de Graaf, Mees N. S. Vivas, Aisen Kasi, Dhanesh G. van den Hil, Francijna E. van den Berg, Albert van der Meer, Andries D. Mummery, Christine L. Orlova, Valeria V. Lab Chip Chemistry Three-dimensional (3D) blood vessels-on-a-chip (VoC) models integrate the biological complexity of vessel walls with dynamic microenvironmental cues, such as wall shear stress (WSS) and circumferential strain (CS). However, these parameters are difficult to control and are often poorly reproducible due to the high intrinsic diameter variation of individual 3D-VoCs. As a result, the throughput of current 3D systems is one-channel-at-a-time. Here, we developed a fluidic circuit board (FCB) for simultaneous perfusion of up to twelve 3D-VoCs using a single set of control parameters. By designing the internal hydraulic resistances in the FCB appropriately, it was possible to provide a pre-set WSS to all connected 3D-VoCs, despite significant variation in lumen diameters. Using this FCB, we found that variation of CS or WSS induce morphological changes to human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) and conclude that control of these parameters using a FCB is necessary to study 3D-VOCs. The Royal Society of Chemistry 2022-12-09 /pmc/articles/PMC9764810/ /pubmed/36484766 http://dx.doi.org/10.1039/d2lc00686c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
de Graaf, Mees N. S.
Vivas, Aisen
Kasi, Dhanesh G.
van den Hil, Francijna E.
van den Berg, Albert
van der Meer, Andries D.
Mummery, Christine L.
Orlova, Valeria V.
Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip
title Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip
title_full Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip
title_fullStr Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip
title_full_unstemmed Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip
title_short Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip
title_sort multiplexed fluidic circuit board for controlled perfusion of 3d blood vessels-on-a-chip
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764810/
https://www.ncbi.nlm.nih.gov/pubmed/36484766
http://dx.doi.org/10.1039/d2lc00686c
work_keys_str_mv AT degraafmeesns multiplexedfluidiccircuitboardforcontrolledperfusionof3dbloodvesselsonachip
AT vivasaisen multiplexedfluidiccircuitboardforcontrolledperfusionof3dbloodvesselsonachip
AT kasidhaneshg multiplexedfluidiccircuitboardforcontrolledperfusionof3dbloodvesselsonachip
AT vandenhilfrancijnae multiplexedfluidiccircuitboardforcontrolledperfusionof3dbloodvesselsonachip
AT vandenbergalbert multiplexedfluidiccircuitboardforcontrolledperfusionof3dbloodvesselsonachip
AT vandermeerandriesd multiplexedfluidiccircuitboardforcontrolledperfusionof3dbloodvesselsonachip
AT mummerychristinel multiplexedfluidiccircuitboardforcontrolledperfusionof3dbloodvesselsonachip
AT orlovavaleriav multiplexedfluidiccircuitboardforcontrolledperfusionof3dbloodvesselsonachip