Cargando…
A role for worm cutl-24 in background- and parent-of-origin-dependent ER stress resistance
BACKGROUND: Organisms in the wild can acquire disease- and stress-resistance traits that outstrip the programs endogenous to humans. Finding the molecular basis of such natural resistance characters is a key goal of evolutionary genetics. Standard statistical-genetic methods toward this end can perf...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764823/ https://www.ncbi.nlm.nih.gov/pubmed/36539699 http://dx.doi.org/10.1186/s12864-022-09063-w |
Sumario: | BACKGROUND: Organisms in the wild can acquire disease- and stress-resistance traits that outstrip the programs endogenous to humans. Finding the molecular basis of such natural resistance characters is a key goal of evolutionary genetics. Standard statistical-genetic methods toward this end can perform poorly in organismal systems that lack high rates of meiotic recombination, like Caenorhabditis worms. RESULTS: Here we discovered unique ER stress resistance in a wild Kenyan C. elegans isolate, which in inter-strain crosses was passed by hermaphrodite mothers to hybrid offspring. We developed an unbiased version of the reciprocal hemizygosity test, RH-seq, to explore the genetics of this parent-of-origin-dependent phenotype. Among top-scoring gene candidates from a partial-coverage RH-seq screen, we focused on the neuronally-expressed, cuticlin-like gene cutl-24 for validation. In gene-disruption and controlled crossing experiments, we found that cutl-24 was required in Kenyan hermaphrodite mothers for ER stress tolerance in their inter-strain hybrid offspring; cutl-24 was also a contributor to the trait in purebred backgrounds. CONCLUSIONS: These data establish the Kenyan strain allele of cutl-24 as a determinant of a natural stress-resistant state, and they set a precedent for the dissection of natural trait diversity in invertebrate animals without the need for a panel of meiotic recombinants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-09063-w. |
---|