Cargando…
Predicting age from resting-state scalp EEG signals with deep convolutional neural networks on TD-brain dataset
INTRODUCTION: Brain age prediction has been shown to be clinically relevant, with errors in its prediction associated with various psychiatric and neurological conditions. While the prediction from structural and functional magnetic resonance imaging data has been feasible with high accuracy, whethe...
Autores principales: | Khayretdinova, Mariam, Shovkun, Alexey, Degtyarev, Vladislav, Kiryasov, Andrey, Pshonkovskaya, Polina, Zakharov, Ilya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764861/ https://www.ncbi.nlm.nih.gov/pubmed/36561135 http://dx.doi.org/10.3389/fnagi.2022.1019869 |
Ejemplares similares
-
Diagnosis of Alzheimer’s disease via resting-state EEG: integration of spectrum, complexity, and synchronization signal features
por: Zheng, Xiaowei, et al.
Publicado: (2023) -
Efficient graph convolutional networks for seizure prediction using scalp EEG
por: Jia, Manhua, et al.
Publicado: (2022) -
The NMT Scalp EEG Dataset: An Open-Source Annotated Dataset of Healthy and Pathological EEG Recordings for Predictive Modeling
por: Khan, Hassan Aqeel, et al.
Publicado: (2022) -
MATLAB Toolboxes for Reference Electrode Standardization Technique (REST) of Scalp EEG
por: Dong, Li, et al.
Publicado: (2017) -
Corrigendum: The NMT Scalp EEG Dataset: An Open-Source Annotated Dataset of Healthy and Pathological EEG Recordings for Predictive Modeling
por: Khan, Hassan Aqeel, et al.
Publicado: (2022)